KD Anderson & Associates, Inc.

Transportation Engineers

February 16, 2018

Ms. Tiffany Wilson **RSC Engineering, Inc.** 2250 Douglas Blvd., Suite 150 Roseville, CA 95661

RE: REVISED ACCESS ASSESSMENT FOR PLACER CREEK APARTMENTS ON UNIVERSITY AVENUE, ROCKLIN, CA

Dear Ms. Wilson:

Thank you for contacting our firm regarding access to the Placer Creek Apartments. As we have discussed, you are interested in confirming the feasibility of full signalized access and a second left-turn-in access on University Avenue in the area between Whitney Ranch Parkway and Larkspur Drive as shown in Figure 1. The area's General Development Plan includes retail commercial and office uses with potentially competing access requirements on the other side of University Avenue, including a northbound left turn lane that could share the space needed for a southbound left turn lane into the apartments at the signal. To evaluate feasibility this investigation of conditions accompanying buildout of the area was prepared to determine whether all movements can be accommodated.

Approach. The assessment involved these steps:

- 1. Identified "build out" p.m. peak hour trip generation for the parcels taking access to University Avenue in the area of the Placer Creek Apartments.
- 2. Reviewed long term p.m. peak hour traffic volumes for the University Avenue / Whitney Ranch Parkway intersection contained in the traffic study prepared for the Northwest Rocklin Area General Development Plan (NRAGDP)¹ to identify baseline future volumes with build out of the area.
- 3. Assigned locally generated traffic based on the travel characteristics in the NRAGDP study to create composite long term p.m. peak hour traffic volumes.
- 4. Calculated operating Levels of Service and estimated queue lengths at study access locations.
- 5. Identified the left turn lane storage requirements in left turn lanes based on anticipated queue lengths and deceleration requirements.

¹ Final Transportation Impact Analysis for the Northwest Rocklin Area General Development Plan, Fehr & Peers, May 5, 2016

Ms. Tiffany Wilson **RSC Engineering, Inc.** February 16, 2018 Page 2

6. Evaluated the sight distance assuming full signalized access based on the obstructions created by median landscaping and roadway curvature.

Development Characteristics. Figure 2 identifies the location of Placer Creek Apartments and the other properties west of University Avenue that will take access via the local area intersections. For the purposes of this analysis, the uses in these areas were assumed as noted in Table 1.

TABLE 1 STUDY AREA LAND USES							
Description	Quantity						
Placer Creek Apartments	242 apartment dwelling units						
Westside Retail	195 ksf of retail commercial buildings						
Westside Hotel	120 room hotel						
Westside Office / Professional	410 ksf of office space in areas 4, 5, 8 and 9						

Trip Generation Rates. Because the NRAGDP analysis is limited to the p.m. peak hour, a trip generation forecast for that period was conducted for study area land uses. Table 2 identifies applicable trip generation rates for these uses.

TABLE 2 TRIP GENERATION RATES									
Description	T	PM Pe	ak Hour Trips p	er Unit					
Description	Unit	In	Out	Total					
Apartments	du	65%	35%	0.62					
Retail Commercial	Ksf	48%	52%	3.71					
Hotel	Room	51%	49%	0.60					
Office Park	200 ksf	12%	88%	1.49					

Trip Generation Forecasts. These rates were applied to the land use inventory to create the trip generation forecasts shown in Table 3.

TABLE 3 TRIP GENERATION FORECASTS									
Description	Quantity	PM Peak Hour Trips per Unit							
Description	Quantity	In	Out	Total					
Apartments	242 du	97	53	150					
Retail Commercial	195 ksf	347	376	723					
Pass-by Trips		104	113	217					
Net New Trips		243	263	506					
Hotel	120 rooms	37	35	72					
Office Park	410 ksf	73	538	611					
Gross Total Trips		554	1,002	1,556					
Pass-by Trips		104	113	217					
Net External Trips		550	889	1,339					

Trip Distribution. The identified local area trips were assigned to the study area intersections based on a general directional distribution that reflects the location of complimentary land uses and proximity to SR 65 via the Whitney Ranch Parkway interchange and is consistent with the results of the NRAGDP study.

TABLE 4 TRIP DISTRIBUTION ASSUMPTIONS								
Direction	Percentage of Total External Trips Apartments Non-Residential							
West via Whitney Ranch Parkway towards SR 65	Apartments 30%	35%						
North on University Avenue	5%	10%						
East via Whitney Ranch Parkway	25%	35%						
West into Retail Commercial / Office	30%	0%						
South on University Avenue	10%	20%						
Total	100%	100%						

Pass-by trips for the retail uses were assumed to be split equally between northbound and southbound traffic streams on University Avenue.

Trip Assignment Assumptions for Retail. Locally generated trips were next assigned to the study area circulation system via the local intersections assuming anticipated access controls. Un-signalized midblock University Avenue access was assumed to be limited to left-turns-in-only. Because three points of access are available to the retail area, assumptions were made as to the relative use of each location, as noted in Table 5.

TABLE 5 RETAIL TRIP ASSIGNMENT ASSUMPTIONS									
Orientation	Direction	Route	Percentage of Total						
West on Whitney Ranch Pky	inbound	Right at Whitney Ranch Pky driveway	75%						
	indound	Midblock right turn	25%						
	outbound	Right turn at midblock then southbound to northbound U-turn at signal	25%						
		Left turn at signal	75%						
East on Whitney Ranch Pky	· . 1 1	Midblock right turn	50%						
	inbound	Right at signal	50%						
		Right turn at Whitney Ranch Pky driveway	50%						
	.1 1	Left turn at signal onto northbound University Ave	25%						
	outbound	Right turn at midblock then southbound to northbound U-turn at signal	25%						
North on Whitney Ranch Pky		Midblock right turn	50%						
	inbound	Right turn at signal	50%						
		Left turn at signal onto northbound University Ave	75%						
	outbound	Right turn at midblock then southbound to northbound U-turn at signal	25%						
East to apartments	outbound	Eastbound at signal	100%						
	. 1 1	Westbound at signal	50%						
	inbound	Right turn to midblock left turn	50%						
South on University Ave		Midblock left turn	50%						
	inbound	Left turn at signal	50%						
		Midblock right turn	50%						
	outbound	Right turn at signal	50%						

<u>Cumulative Traffic Volume Forecasts.</u> Figure 3 identifies the long term p.m. peak hour traffic volume forecasts for study area intersections derived from the results of the NRAGDP traffic study and our local assignment. The intersection turning movements presented at the University Avenue / Whitney Ranch Parkway intersection are taken directly from that study, while the volumes at other intersections on University Avenue were balanced with through traffic to match the control volumes entering and exiting the Whitney Ranch Parkway intersections.

Level of Service Analysis. The operating Levels of Service at the signalized access intersection and at the midblock location were calculated using HCM 2010 methodology and Synchro software. This choice was made as an alternative to the City's normal approach (i.e., Circular No. 212) since that methodology does not yield estimates of vehicles queues.

Assumptions were made regarding the configuration of each intersection based on the nature of each land use and typical City of Rocklin policies for access to new four lane streets. Separate southbound right turn lanes were assumed at the two points of access to the retail area. A three lane approach to the University Avenue signal was assumed from the retail area, and based on the volume of left turning traffic this approach was assumed to be configured a left turn lane, a combined left plus thru and a separate right turn lane.

As noted, each location is projected to operate with Levels of Service that satisfy the City's minimum LOS C standard.

TABLE 6 CUMULATIVE WITH PROJECT PM PEAK HOUR LEVELS OF SERVICE									
Location	Control	PM Peak Hour							
	Control	Average Delay	Level of Service						
Whitney Ranch Pky / University Ave	Signal	34.2	С						
Apartment Midblock Access									
(overall)									
Southbound left turn	WB Stop								
Westbound right turn									
Retail Midblock Access									
(overall)		(1.0)	(A)						
Northbound left turn	EB Stop	8.5	А						
Eastbound right turn		10.8	С						
Signalized Access from Apartments and Retail	Signal	18.4	В						

Queueing / Left Turn Pocket Length. The area between the Whitney Ranch Parkway intersection and the new signaled access will need to accommodate four separate left turn lanes under the proposed configuration. This total distance is 930 feet, and roughly 330 feet is available from the center of the midblock retail access to the crosswalk at the new traffic signal on University Avenue at the south end of the study area.

Desirable left turn pocket lengths can typically be determined from the standards presented in the Caltrans Highway Design Manual (HDM). Caltrans suggests that the combination of left turn lane and bay taper be long enough to hold waiting cars as well as deceleration outside of through travel lanes. If full deceleration from 40 mph is to be accommodated outside of the through travel lane, then the combination of bay taper and left turn lane would need to be 365 feet long to accommodate two waiting vehicles (i.e., 50 feet) plus deceleration to a stop from 40 mph (i.e., 315 feet). Assuming that 20 mph deceleration in advance of the turn pocket is acceptable, then these facilities would need to be at least 170 feet long to accommodate two waiting vehicles (i.e., 50 feet) plus deceleration to a stop from 20 mph (i.e., 120 feet).

While this approach is applicable to high speed roads, the City of Rocklin has typically employed a standard left turn lane length at intersections on new roadways. For example, all the left turn lanes at the signalized Whitney Ranch Parkway / Wildcat Blvd intersection are 220 to 250 feet long and preceded by 160 foot long bay tapers. Left turn lanes at un-signalized median openings can often be shorter, and the combination of turn lane and bay taper is 180 feet at locations on Lone Tree Blvd.

Peak period queue lengths were identified as a byproduct of the Level of Service analysis, and an alternative storage recommendation at un-signalized locations was identified from HDM Chapter 405.2. As noted in Table 7, the two northbound left turn lanes approaching Whitney Ranch Parkway are expected to carry 530 vph. The 95th percentile queue in these lanes would be 9 vehicles or 225 feet.

The northbound left turn at the midblock opening for the retail center is projected to handle 56 vph while 29 vph are expected at the apartment access. HCM 2010 calculation suggests that no appreciable queues will occur. Alternatively, HDM Chapter 405.2 suggests that un-signalized left turn lanes be designed to store a two minute accumulation of entering vehicles. The forecast traffic volumes would require storage for 2 vehicles under these criteria.

The forecast queue in the southbound left turn lane providing signalized access to Placer Creek Apartments has also been identified. A total of 116 vehicles turning left or making U-turns is projected, and a 95th percentile queue of 5 vehicles or 125 feet is anticipated.

Recommended Left Turn Lane Lengths. Table 7 also identifies the recommended left turn lane / bay taper lengths at each location based on the sum of minimum deceleration and storage requirements.

The minimum area between the new signal and the retail area's northbound left turn opening can be determined. The sum of the retail northbound left turn lane / bay taper requirement (170 feet) and the requirements at southbound left turn lane serving the apartments (245 feet) is 415 feet. This is slightly more than the distance between intersections in the conceptual area plan. This issue could be resolved by eliminating the landscaped median between intersections and creating "overlapping" bay tapers. A common 60 foot taper would allow the south end of the new opening to be 355 feet from to crosswalk of the apartment access intersection. Alternatively the midblock driveway could be moved to the north to provide separate lanes and bay tapers, and this could accommodate some landscaped median.

The requirements for the location of the midblock southbound left turn lane for the apartments can be determined in a similar manner. The dual NB left turn lanes approaching Whitney Ranch Parkway needed to be 225 feet long to accommodate 9 vehicle queues and to be preceded by a 120 foot taper. The southbound turn lane and taper should total 170 feet. To fit in these requirements the northbound and southbound lanes must share a common bay taper. This will likely eliminate the raised median in this area.

TABLE 7 PROJECTED QUEUES AND LANE RECOMMENDATIONS											
Location	Volume (vph)	HCM 2010 95 th percentile queue				Sum of Turn Lane and Bay Taper					
		Vehicles Length		Vehicles	Length	Storage	Deceleration	Total			
Northbound dual left turn lanes at Whitney Blvd	530	9	225	-	-	225	120	345			
Southbound left turn at Apartments midblock access	29	<1	<25	2	50	50	120	170			
Northbound left turn lane at Retail midblock access	56	<1	<25	2	50	50	120	170			
Southbound left turn at new signal	116	5	125	-	-	125	120	245			

Please feel free to contact me at (916) 660-1555 if you have any questions.

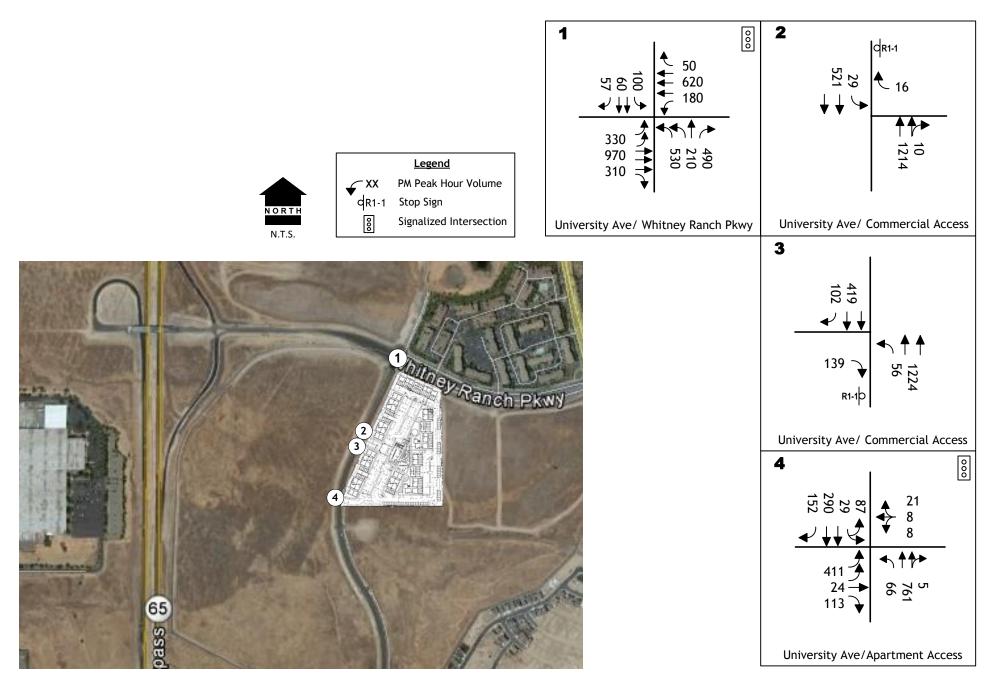
Sincerely yours,

KD Anderson & Associates, Inc.

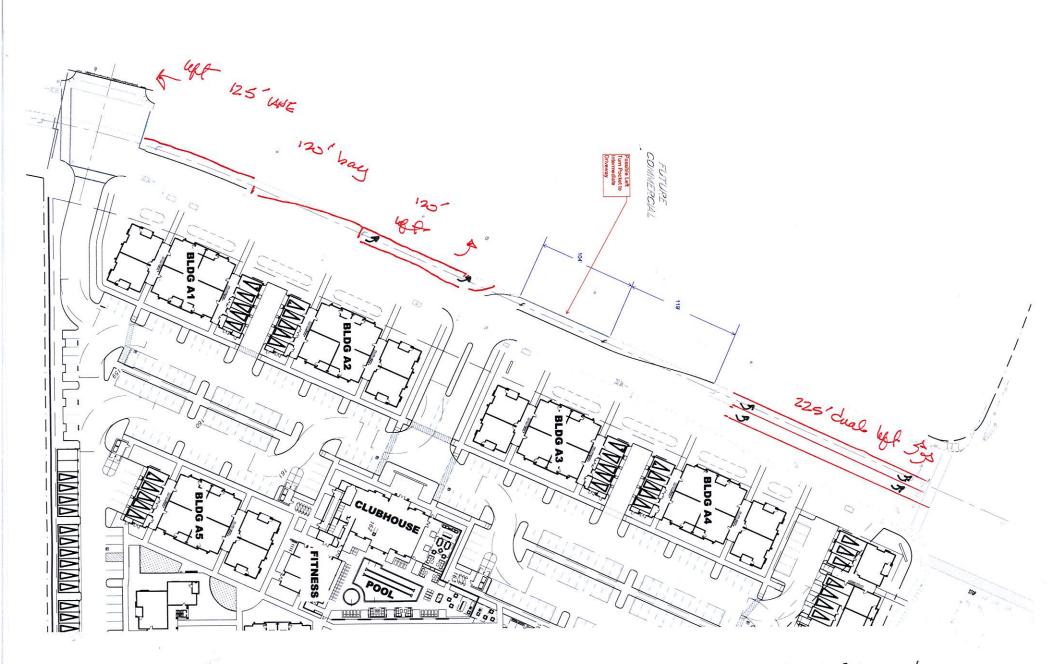
Kenneth D. Anderson, P.E. President

Attachments

Placer Creek University Ave 6260-22.ltr



VICINITY MAP



TRIP GENERATION AREA

KD Anderson & Associates, Inc. Transportation Engineers

KD Anderson & Associates, Inc. Transportation Engineers 6260-22 RA 2/16/2018 CUMULATIVE PLUS PROJECT TRAFFIC VOLUMES AND LANE CONFIGURATIONS

LANE TREATMENT TO ACCOMODATE SOUTHBOUND UPPT TUN

1-100

KAK

HCM 2010 Signalized Intersection Summary 3: University Ave & Whitney Ranch Pkwy

•

429999-1-1-420999-1-1-420-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	and the second second		***	¥	dana.	×.	1	Å	M	1	Å	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	***	۴	ኻኻ	<u> </u>	7	ካካ	仲	۴	ሻሻ	个个	1
Traffic Volume (veh/h)	330	970	310	180	620	50	530	210	490	100	60	570
Future Volume (veh/h)	330	970	310	180	620	50	530	210	490	100	60	570
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	.0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/in	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	359	1054	337	196	674	54	576	228	533	109	65	620
Ad No. of Lanes	2	3	6 (SAM)	2	3	1	2	2	1	2	2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	477	1555	797	282	1266	394	680	1251	690	178	735	549
Arrive On Green	0.14	0.31	0.31	0.08	0.25	0.25	0.20	0.35	0.35	0.05	0.21	0.21
Sat Flow, veh/h	3442	5085	1583	3442	5085	1583	3442	3539	1583	3442	3539	1583
Grp Volume(v), veh/h	359	1054	337	196	674	54	576	228	533	109	65	620
Grp Sat Flow(s), veh/h/ln	1721	1695	1583	1721	1695	1583	1721	1770	1583	1721	1770	1583
Q Serve(g_s), s	7.8	14.0	2.8	4.3	8.9	2.0	12.5	3.4	22.1	2.4	1.1	12.3
Cycle Q Clear(g_c), s	7.8	14.0	2.8	4.3	8.9	2.0	12.5	3.4	22.1	2.4	(1.1	12.3
	1.00	14.U	1.00	1.00	0.3	1.00	1.00	 1966-1966-1966	1.00	1.00	۱۰۱ کېکېکېکېک	12.0
Prop In Lane	477	1555	797	282	1266	394	680	1251	690	178	735	549
Lane Grp Cap(c), veh/h	0.75	0.68	0.42	0.69	0.53	0,14	0.85	0.18	0.77	0.61	0.09	1,13
V/C Ratio(X)	e in a freeze fan de se	1908	0.4Z 907	sur chereberge ser	e se d'a presentation de la compacta de la compact	0, 14 394	680	1420	765	223	962	650
Avail Cap(c_a), veh/h	980			401	1266			1420	1.00	1.00	902 1.00	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	an ann an Air	and the first state of the second state	an a star that a star of the	a na sa	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.0	23.5	4.2	34.5	25.1	22.6	29.9	17.3	18.6	35.9	24.7	9.0
Incr Delay (d2), s/veh	2,4	0.7	0.4	3.1	0.4	0.2	9.8	0.1	4.5	3.4	0.1	78.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.8	6.6	2.3	2.2	4.2	0.9	6.8	1.7	10.4	1.2	0.6	17.2
LnGrp Delay(d),s/veh	34.4	24.2	4.5	37.6	25.6	22.7	39.7	17.3	23.0	39.3	24.8	87.4
LnGrp LOS	<u> </u>	<u>C</u>	<u> </u>	D	C	С	D	В	<u> </u>	D	<u> </u>	F
Approach Vol, veh/h		1750			924			1337			794	
Approach Delay, s/veh	a esteau	22.5	and a state of the	a and sta	27.9	a in a stratut a t		29.2		والمراجع والمراجع	75.7	
Approach LOS		C			C			C			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.0	31.3	10.3	27.6	19.3	20.1	14.7	23.2	n se	90.6494469		N HARRING HAR
	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	rini ana			(langerer)
Change Period (Y+Rc), s		a second s			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a a ser a		16.0	2011 (CREAR 	an a		letter of the
Max Green Setting (Gmax), s	5.0	31.0	9.0	29.0	15.0	21.0	22.0		An	en e		C-Noose
Max Q Clear Time (g_c+I1), s	4.4	24.1	6.3 0.2	16.0	14.5	14.3 1 7	9,8 1.0	10.9 4.2	~~~~~~~	가만분하여		gargana. A
Green Ext Time (p_c), s	0.0	3.2	0.2	7.6	0.4	1.7	1.0	4.2				
Intersection Summary												
HCM 2010 Ctrl Delay			34.2									
HCM 2010 LOS			Ċ									
		ana ang ang ang ang ang ang ang ang ang					an a					anan dari Manan dari dari dari dari dari dari dari dari
Notes												
						1						

03/30/2017 Baseline

Synchro 9 Report Page 2

. Seconda de 1.3

Intersection

Int Delay, s/veh

Movement	EBI.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	0	0	139	0	0	16	56	1214	10	 29	521	102
Conflicting Peds, #/hr	0	Ó	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	None	-	-	None	•	-	None	-	-	None
Storage Length						0	150			150	.=	200
Veh in Median Storage, #	-	1	-	-	1	-	-	0	-	~	-0	-
Grade, %		0	•		0			0		 . 14	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	0	0	151	0	0	17	61	1320	11	32	566	111
		14.55	Sec. State	그는 아주는 것같?	gebeekee			tin da Es	12.52	· · · ·	на, 11. Страна (11.	

Major/Minor	Minor2			Minor1			Major1		Major2	
Conflicting Flow All	1411	2081	283	1793	2076	665	566	0 0	1330	0 0
Stage 1	629	629	н. Н	1447	1447	-	-		*	
Stage 2	782	1452		346	629		•			म् अ
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	~ ~	4.14	
Critical Hdwy Stg 1	6.54	5.54		6.54	5.54					
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-		-	. .
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22		2.22	
Pot Cap-1 Maneuver	98	53	714	51	53	403	1002	• •	515	
Stage 1	437	474	•	138	195					
Stage 2	353	194	*	643	474	-	-	• *	**	
Platoon blocked, %				2.5.5.8.8				• • •	6 6 6 6 6 6 7	
Mov Cap-1 Maneuver	85	47	714	37	47	403	1002		515	er er
Mov Cap-2 Maneuver	191	118	649343 9 (9)	102	131	() (•	o de Probae de S		ang binang e ord	
Stage 1	410	445	•	130	183	en e	-	e e e	a.	e e
Stage 2	317	182		475	445	34 49 1 5 4				

Approach	EB	WB	NB	SB
HCM Control Delay, s	11.4	14.3	0.4	0,6
HCMLOS	B	В		

Minor Lane/Major Mvmt	NBL N	(B)	NBR EI	3Ln1V	/BLn1	SBL	SBT (SBR	
Capacity (veh/h)	1002	я	77	714	403	515		77	
HCM Lane V/C Ratio	0.061		- ().212	0.043	0.061	51 cc •	•	
HCM Control Delay (s)	8.8	-	-	11.4	14.3	12.4	••	*	
HCM Lane LOS	A			B	B	B	9 -		
HCM 95th %tile Q(veh)	0.2	-	1 7	0.8	0.1	0.2	-	•	

	A	a figures a	>	¢	-	4	٩	Ŷ	p	1	Ŷ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL.	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	র্ঝ	P		4		ሻ	仲乃			A A	ř
Volume (veh/h)	411	24	113	8	8	21	66	761	5	116	290	152
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	466	0	101	9	9	23	72	827	5	126	315	83
Adj No. of Lanes	2	0	1	0	1	0	1	2	0	1	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	594	0	265	11	11	29	92	1928	12	159	2026	906
Arrive On Green	0.17	0.00	0.17	0.03	0.03	0.03	0.05	0.53	0.53	0.03	0.19	0.19
Sat Flow, veh/h	3548	0	1583	368	368	941	1774	3607	22	1774	3539	1583
Grp Volume(v), veh/h	466	0	101	41	0	0	72	406	426	126	315	83
Grp Sat Flow(s), veh/h/ln	1774	0	1583	1678	0	0	1774	1770	1859	1774	1770	1583
Q Serve(g_s), s	11.3	0.0	5.1	2.2	0.0	0.0	3.6	12.5	12.5	6.4	6.7	3.9
Cycle Q Clear(g_c), s	11.3	0.0	5.1	2.2	0.0	0.0	3.6	12.5	12.5	6.4	6.7	3.9
Prop In Lane	1.00	a and the second	1.00	0.22		0.56	1.00		0.01	1.00		1.00
Lane Grp Cap(c), veh/h	594	0	265	51	0	_ 0	92	946	994	159	2026	906
V/C Ratio(X)	0.78	0.00	0.38	0.80	0.00	0.00	0.78	0.43	0.43	0.79	0.16	0.09
Avail Cap(c_a), veh/h	1025	0	457	298	0	0	118	946	994	237	2026	906
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.9	0.0	33.3	43.4	0.0	0.0	42.1	12.6	12.6	42.8	18,3	17.2
Incr Delay (d2), s/veh	2.3	0.0	0.9	24.3	0.0	0.0	21.8	1.4	1.4	10.3	0.2	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/in	5.8	0.0	2.3	1.4	0.0	0.0	2.3	6.5	6.8	3.6	3.3	1.8
LnGrp Delay(d),s/veh	38.2	0.0	34.2	67.6	0.0	0.0	64.0	14.1	14.0	53.1	18.5	17.4
LnGrp LOS	D		C	E			E	B	B	D	B	B
Approach Vol, veh/h		567			41			904			524	
Approach Delay, s/veh		37.5	6.6.6		67.6	18 8 18 1	e de la co	18.0		6 (B (S))	26.6	
Approach LOS		D			E			В			°C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	12.1	52,1		19.1	8.7	55.5	0 G 18 S	6.7		8.8.8 A		
Change Period (Y+Rc), s	4.0	4.0		4.0	4.0	4.0		4.0				
Max Green Setting (Gmax), s	3 12.0	20.0	nia (oprina) (p Alar (Barata)	26.0	6.0	26.0		16.0				
Max Q Clear Time (g_c+l1),	s 8.4	14.5		13.3	5.6	8.7		4.2				
Green Ext Time (p_c), s	0.1	3.4		1,7	0.0	7.3		0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			26.7									
HCM 2010 LOS	a mengangan kang di kang di k	n an	C	an ta sa	en e la compañía de la compañía de -	9, 2 mi (10 pi) (10 pi)			a an	Der der Jase (1999) och (1999) och (1997)	en se ne spinisji i	an san san san san san san san san san s
			-									

Notes

User approved volume balancing among the lanes for turning movement.

PLACER CREEK APARTMENTS 4: University Ave & Commercial/Apartments

1 A * Å ٨., I

Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	237	236	123	41	72	832	126	315	165	
v/c Ratio	0.68	0.67	0.27	0.28	0.40	0.52	0.55	0.18	0.19	
Control Delay	42.0	41.6	3.7	27.1	43.6	23.4	50.1	13.2	2.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	42.0	41.6	3.7	27.1	43.6	23.4	50.1	13.2	2.2	
Queue Length 50th (ft)	131	130	0	10	39	186	71	46	0	
Queue Length 95th (ft)	192	191	23	40	78	#359	126	77	16	
Internal Link Dist (ft)		445		527		690		346		
Turn Bay Length (ft)	200		200		200		200		200	
Base Capacity (vph)	485	489	569	321	181	1597	257	1771	874	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.49	0.48	0.22	0.13	0.40	0.52	0.49	0.18	0.19	

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.