# **APPENDIX J**

Sierra Gateway Apartments Drainage Report

Prepared For

Rocklin Sierra Apartments II LLC

**Prepared By** 

OMNI-MEANS, LTD. ENGINEERS & PLANNERS 943 Reserve Drive, Suite 100 Roseville, California 95678 (916) 782-8688

#### SIERRA GATEWAY APARTMENTS DRAINAGE REPORT

**Prepared For** 

## ROCKLIN SIERRA APARTMENTS II LLC

Prepared By

OMNI-MEANS, LTD. ENGINEERS & PLANNERS 943 Reserve Drive, Suite 100 Roseville, California 95678 (916) 782-8688



#### AUGUST 2015

25-7185-01 (R1783HYD001.doc)

### TABLE OF CONTENTS

| PURPOSE1            |   |
|---------------------|---|
| EXISTING CONDITIONS |   |
| REGIONAL HYDROLOGY  | , |
| LOCAL HYDROLOGY     |   |
| METHODOLOGY         | ) |
| Precipitation       | 1 |
| Loss Rate           | ) |
| RESULTS             | ) |
| WATER QUALITY       | , |
| DRAINAGE SYSTEMS    | , |
| CONCLUSIONS         | , |

### LIST OF FIGURES

| Figure 1 - Vicinity Map                                                          | 1 |
|----------------------------------------------------------------------------------|---|
| Figure 2 - Project Site Location Within Dry Creek Watershed                      | 4 |
| Figure 3 – Dry Creek Flood Control Plan Locations Where Detention is Recommended | 5 |
| Figure 4 – Overall Watershed                                                     | 6 |
| Figure 5 – Existing Watersheds                                                   | 7 |
| Figure 6 – Proposed Watersheds                                                   | 8 |

#### LIST OF TABLES

| Table 1 Existing Conditions Peak Flow Rates For 10 Year (10% Probability) Storm  | 10 |
|----------------------------------------------------------------------------------|----|
| Table 2 Existing Conditions Peak Flow Rates For 100 Year (1% Probability) Storm  | 10 |
| Table 3 Developed Conditions Peak Flow Rates For 10 Year (10% Probability) Storm | 10 |
| Table 4 Developed Conditions Peak Flow Rates For 100 Year (1% Probability) Storm | 11 |
| Table 5 Comparison of 10-year and 100-year peak flow at XN-OUT                   | 11 |

#### **APPENDICES**

Appendix A – Background Data

Appendix B – Flows in each Shed and Hydraulic Grade Line Calculations

Appendix C – Improvement Plans

Appendix D – Water Quality Structural BMPs

## PURPOSE

The purpose of this study is to provide an analysis of the existing hydraulic conditions and potential drainage related impacts within the Dry Creek Watershed due to the planned development of the Sierra Gateway Apartments project. This study is required by the City of Rocklin and utilizes the Placer County Flood Control and Water Conservation District Stormwater Management Manual for the approval of the project.

This study addresses drainage sheds and areas, flow rates for existing and proposed conditions at 10-year and 100-year storm events, including overland release points. Hydraulic grade line elevations and storm drain pipe sizing for the onsite and offsite storm drainage system are addressed in this report.

## **EXISTING CONDITIONS**

### GENERAL

The Sierra Gateway Apartments site is approximately 8.83 acres in size located in the city of Rocklin in Placer County, bounded on the north by Rocklin Road, on the west by Sierra College Boulevard, on the south by Aguilar Creek and a small residential development, and on the east by Rocklin Manor Apartments (**Figure 1**).



Figure 1 - Vicinity Map

Site topography is characterized by moderately sloped hills and a considerable depression located in the northwestern corner of the site as well as numerous existing swales located in the southern portion of the site near Aguilar Creek.

The majority of the slopes range from 2 to 10 percent. Site elevations vary from 305 ft. near the outfall of the subshed in the southern end of the site to 350 ft. in the northeastern corner of the site. Site vegetation consists mostly of native grasses and dense oak trees with some areas of dense brush and berry vines. The only existing structures on the site consist of two retaining walls along the eastern property boundary and along the northern side of Water Lily Lane.

## **REGIONAL HYDROLOGY**

The Sierra Gateway Apartments site is located within the Secret Ravine Creek watershed. The Secret Ravine Creek watershed is part of a much larger watershed known as the Dry Creek watershed, which covers approximately 101 square miles in Placer and Sacramento Counties. In April 1992, the final report for the Dry Creek Watershed Flood Control Plan was completed by James M. Montgomery Consulting Engineers. The report was sponsored by the Placer County Flood Control and Water Conservation District (PCFCD) and the Sacramento County Water Agency. The report includes information and recommendations for policies necessary to manage the storm waters within the Dry Creek watershed.

As part of the Nonstructural Policy Recommendations contained in the final Dry Creek Watershed Flood Control Plan, it was recommended that all new development located in the upper reaches of the basin provide local, on-site detention of stormwater flows except where it is determined by the District Engineer that local detention is either not required or not practical. Pursuant to the Flood Control Plan, there are some locations in the watershed where model studies indicated that travel time and other timing considerations cause local detention to increase downstream flood flows over existing conditions. **Figure 2** and **Figure 3** on the following pages show the location of the Sierra Gateway Apartments site within the Dry Creek Watershed Flood Control Plan study area. The project site is located partially on the boundary of where detention is recommended and where it is not. The City of Rocklin condition of approval 3.a.iii for the project states that "detaining runoff is not recommended, however the developer shall assess the capacity of existing downstream drainage facilities to determine if mitigation measures are needed for controlling stormwater run-off. (Placer County Flood Control and Water Conservation District)"

## LOCAL HYDROLOGY

## **EXISTING WATERSHEDS**

The majority of the project site is located on a local high point, and as such, little offsite drainage enters the site. North of the site there are areas which historically drained through the site, but have since been directed around the site via storm drain piping in Rocklin Road and Sierra College Boulevard. East of the site a watershed of approximately 680 acres flows to a double 72-inch pipe culvert under Sierra College Boulevard south of Water Lily Lane. See "XS SHED 0" on **Figure 4** "Overall Watershed."

Runoff from the site drains through two sub-basins (North and South) referred to in this report with an "N" designation for the North shed and "S" for the South shed. The existing watersheds are labeled "XN" for the north subsheds and "XS" for the southern subsheds. For the proposed developed site, this report uses the prefixes "PN" for the north sheds and "PS" for the south. Each of these subbasins ultimately outfall into Aguilar Creek, with the North system discharging to the west (downstream) of Sierra College Boulevard and the South system to the east upstream of the double 72-inch pipe culvert. Aguilar Creek eventually drains into Secret Ravine Creek approximately 0.5 miles downstream to the west.

There are two points of outfall for the project site. The northern half of the site discharges into a 24-inch corrugated metal pipe underneath Sierra College Boulevard which also receives runoff from an 18-inch storm drain in Sierra College Boulevard which collects drainage from Rocklin Road and areas north of Rocklin Road . The outfall of this pipe is on the west side of Sierra College Boulevard near the outfall of a double 72-inch pipe culvert underneath Sierra College Boulevard as shown as point "XN-OUT" on **Figure 5** "Existing Watersheds."

**Figure 5** also shows the location of the second outfall which receives runoff from the southern half of the project site and consists of an existing 24-inch storm drain along the southern property line. This storm drain collects drainage from the Rocklin Manor Apartment complex to the east of the project site. The outfall of this system is 27" concrete pipe which parallels Sierra College Boulevard and outfalls upstream of the double 72" pipe culvert underneath Sierra College Boulevard.

### **PROPOSED IMPROVEMENTS**

For analysis and comparison purposes, control points are established at the outfalls "XN-OUT" and "XS-OUT" for each system and "XS-0" located at the upstream end of the double 72-inch culvert under Sierra College Boulevard as shown on **Figures 4 through 6**.

The Sierra Gateway Apartments existing watershed analyzed in this report consists of the site itself of approximately 8.25 acres lying within an overall watershed encompassing approximately 719 acres (1.12 square miles). The watersheds are shown on **Figure 4** "Overall Watershed" and **Figure 5** "Existing Watersheds" on the following pages. The individual existing drainage sheds are labeled with letters XN SHED 1 through XN SHED 8 and XS SHED 0 through XS SHED 8.

**Figure 6** "Proposed Watersheds" shows the proposed improvements which include 12 residential use buildings, 387 total parking stalls, one main entrance on Rocklin Road and one emergency access on Water Lily Lane. The shed boundaries were modified from existing to represent new drainage patterns as a result of the development. The site plan for the project identified the access roadways, building envelopes and access driveways for the site. These areas were measured and the quantity of impervious area was correspondingly increased to represent the proposed development.

The layout and design of the storm drainage system for the site determines the delineation of the proposed drainage sheds and the runoff response of the developed site. This project proposes to collect roadway and parking lot drainage through the use of surface drainage and drain inlets. Drainage will then be conveyed by storm drain to a suitable outfall.

Typically, drainage from a project is directed to outfall in the same location as existing and diversions of drainage from one shed to another are generally avoided. However minor changes in shed boundaries are expected as part of the development and for this project due to a known capacity problem with the northern system in Sierra College Boulevard and Rocklin Road, approximately one acre of shed area is diverted from the northern system to the southern system.





File: 1783HD002.dwg 25-7185-01







## METHODOLOGY

#### GENERAL

Pre and post-development flows were determined for the 10 and 100-year (10% and 1% probability) storms using the Methods prescribed by the Placer County Flood Control and Water Conservation District (PCFCD) *Stormwater Management Manual, Sept 1, 1990 (with 1997 Addendum 1).* Existing site conditions were modeled based on aerial topographic mapping, existing surveys, and site reconnaissance. Proposed site conditions were modeled based on the proposed contours developed by the boundary and topographic survey conducted within Omni-Means, Ltd. and the building footprints developed by MVE architects.

#### PRECIPITATION

Rainfall depths for 10 and 100-year frequency storms were obtained directly from Appendix V-A of the PCFCD Stormwater Manual. Values of rainfall depth by duration were interpolated for the site's 345 ft average elevation.

#### LOSS RATE

The "Soil Survey of Placer County, California – Western Part" was referenced to determine the soil classification within the Sierra Gateway Apartments watershed. Per the survey, the project site is composed of Soil Type B hydrologic soil group as defined by the Soil Conservation Service. See **Appendix A**.

The Sierra Gateway Apartments ground cover type is best classified as "Woodland – Coniferous or broadleaf trees predominate (Canopy density of at least 50%)". The quality of the ground cover varies and is estimated as "fair". Pursuant to the criteria established by Table 5-3 of the PCFCD Stormwater Management Manual (Feb 1994), the constant rate infiltration capacities of this soil type is a constant rate loss of 0.22 inches per hour. This information is available for reference in **Appendix A**.

#### LAND USE

The proposed land use for the Sierra Gateway Apartments site is residential multi-family. Developed areas of the site averaged 84% impervious overall by assigning the building envelopes, driveways, and parking areas as impervious area and including dedicated open space and landscape areas as pervious area. For existing conditions, undeveloped areas were assumed to have an average imperviousness of 5%. The site plan, including the parking lots, is shown on **Figure 6**, "Proposed Watersheds."

#### **RUNOFF RESPONSE**

As specified in the PCFCD Stormwater Management Manual, the Kinematic Wave method shall be the basic approach to runoff response for developing watersheds. The representation of a watershed with the Kinematic Wave model requires great simplification and reduction. Parameters chosen for elements represent typical average parameters of the watershed and do not necessarily represent specific, physical elements.

The primary effect development will have on runoff will be due to an increase in the amount of impervious in addition to a reduced "roughness" (Manning's n value) of the storm drain pipes and collector channels. The derived "n" value for the developed and undeveloped collectors is contained in **Appendix B** and was represent the various developed and existing pipes, collectors and channel components. In order to select representative overland flow lengths and collector channels, the procedures

prescribed in the PCFCD Stormwater Management Manual were used and resulting table summaries can be found in **Appendix B**.

#### RESULTS

The results of the peak flow calculations for key points for comparative analysis of the existing site's 10year and 100-year storm events are presented in Table 1 and 2 respectively. Full peak flow summaries for all subsheds are provided in **Appendix B**.

| PEAK F                        | EXISTING CONDITIONS<br>PEAK FLOW RATES FOR 10 YEAR (10% PROBABILITY) STORM |                    |                                 |                              |  |  |  |
|-------------------------------|----------------------------------------------------------------------------|--------------------|---------------------------------|------------------------------|--|--|--|
|                               |                                                                            | Ex                 | isting Conditions               |                              |  |  |  |
| Shed No./<br>Control<br>Point | Accum Area<br>(ac)                                                         | Peak Flow<br>(cfs) | Unit Peak<br>Runoff<br>(cfs/ac) | Response<br>Time Tr<br>(min) |  |  |  |
| XN 8                          | 3.5                                                                        | 5.8                | 1.78                            | 14.0                         |  |  |  |
| XN 7                          | 16.9                                                                       | 5.8                | 0.62                            | 39.0                         |  |  |  |
| XN OUT                        | 22.1                                                                       | 7.6                | 0.59                            | 42.2                         |  |  |  |
| XS 1                          | 7.0                                                                        | 11.0               | 1.50                            | 17.8                         |  |  |  |
| XS OUT                        | 9.9                                                                        | 11.7               | 1.30                            | 19.9                         |  |  |  |
| XS 0                          | 698                                                                        | 199                | 0.56                            | 48.4                         |  |  |  |

| PEAK FLC                   | EXIST<br>W RATES FOR 1 | ING CONDITIO<br>100 YEAR (1% F | PNS<br>PROBABILITY)             | STORM                        |
|----------------------------|------------------------|--------------------------------|---------------------------------|------------------------------|
|                            |                        | Ex                             | isting Condition                | s                            |
| Shed No./<br>Control Point | Accum Area<br>(ac)     | Peak Flow<br>(cfs)             | Unit Peak<br>Runoff<br>(cfs/ac) | Response<br>Time Tr<br>(min) |
| XN 8                       | 3.5                    | 10.3                           | 3.24                            | 14.0                         |
| XN 7                       | 16.9                   | 16.1                           | 1.23                            | 39.0                         |
| XN OUT                     | 22.1                   | 20.2                           | 1.16                            | 42.2                         |
| XS 1                       | 7.0                    | 18.4                           | 2.78                            | 17.8                         |
| XS OUT                     | 9.9                    | 23.2                           | 2.46                            | 19.9                         |
| XS 0                       | 698                    | 534                            | 1.04                            | 48.4                         |

| TABLE 2                                             |
|-----------------------------------------------------|
| EXISTING CONDITIONS                                 |
| PEAK FLOW RATES FOR 100 YEAR (1% PROBABILITY) STORM |

The results of the peak flow calculations for the key locations above for the developed site's 10-year and 100-year storm events are presented in Table 3 and 4 respectively. Where the label has changed from the existing to proposed condition, the existing condition label is presented in parentheses.

|     | TABLE 3                                                                |
|-----|------------------------------------------------------------------------|
| DEV | VELOPED CONDITIONS PEAK FLOW RATES FOR 10 YEAR (10% PROBABILITY) STORM |
|     | DEVELOPED CONDITION                                                    |

|                            |                    | DEVELOPED CONDITION |                              |                           |  |  |  |
|----------------------------|--------------------|---------------------|------------------------------|---------------------------|--|--|--|
| Shed No./<br>Control Point | Accum Area<br>(ac) | Peak Flow<br>(cfs)  | Unit Peak Runoff<br>(cfs/ac) | Response Time<br>Tr (min) |  |  |  |
| PN 3 (XN 8)                | 2.32               | 4.5                 | 1.94                         | 12.1                      |  |  |  |
| XN 7                       | 16.9               | 5.8                 | 0.62                         | 39.0                      |  |  |  |
| XN OUT                     | 21.1               | 8.2                 | 0.59                         | 42.1                      |  |  |  |

| PS 3 (XS 1) | 9.1  | 16.0 | 1.78 | 14.86 |
|-------------|------|------|------|-------|
| XS OUT      | 10.3 | 16.2 | 1.60 | 16.6  |
| XS 0        | 698  | 201  | 0.56 | 48.4  |

TABLE 4 DEVELOPED CONDITIONS PEAK FLOW RATES FOR 100 YEAR (1% PROBABILITY) STORM

|                            |                       | DEVELOPED CONDITION |                                 |                           |  |  |  |
|----------------------------|-----------------------|---------------------|---------------------------------|---------------------------|--|--|--|
| Shed No./<br>Control Point | Accum<br>Area<br>(ac) | Peak Flow<br>(cfs)  | Unit Peak<br>Runoff<br>(cfs/ac) | Response Time Tr<br>(min) |  |  |  |
| PN 3 (XN 8)                | 2.32                  | 8.1                 | 3.52                            | 12.1                      |  |  |  |
| XN 7                       | 16.9                  | 16.1                | 1.23                            | 39.0                      |  |  |  |
| XN OUT                     | 21.1                  | 20.2                | 1.16                            | 42.1                      |  |  |  |
| PS 3 (XS 1)                | 9.1                   | 29.3                | 3.24                            | 14.9                      |  |  |  |
| XS OUT                     | 10.3                  | 29.9                | 2.94                            | 16.6                      |  |  |  |
| XS 0                       | 698                   | 536                 | 1.04                            | 48.4                      |  |  |  |

North System: Comparing the total runoff from the north system at point "XN OUT", there was a slight increase in total runoff during the 10-yr event of 0.6 cfs and no increase in peak flow for the 100-yr event. The fact that the 100-year peak flow is calculated to remain the same while the 10-year shows an increase seemed to indicate an error in calculations, however the results are determined to be due to the methodology itself. For the northern shed, the total response time is the same pre-development vs. postdevelopment due to its dependency on sub-shed XN-7 with a response time of 39 minutes. The unit peak flow rate is therefore the same for each condition, and with the reduction of approximately 1 acre of contributory area the peak flows before infiltration factored in is actually reduced in the post-development condition. The infiltration factor is identical regardless of storm return frequency. When applying the infiltration reduction, the smaller difference in unadjusted Q10 (Pre vs. Post) and larger relative difference in infiltration adjustment results in an overall increase in peak flow. Unadjusted Q<sub>100</sub> has a greater difference between pre- and post-development condition with the same infiltration adjustments resulting in this case a post-development  $Q_{100}$  which is equal to pre-development. These calculations are summarized in Table 5.

| CO                                  | COMPARISON OF 10-YEAR AND 100-YEAR PEAK FLOW AT XN-OUT |                                 |                                  |                     |                    |                                    |                 |
|-------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------|---------------------|--------------------|------------------------------------|-----------------|
|                                     | Area<br>(ac)                                           | Unit Peak<br>Runoff<br>(cfs/ac) | Unadjusted<br>Peak Flow<br>(cfs) | Difference<br>(cfs) | Impervious<br>Area | Infiltration<br>Reduction<br>(cfs) | Peak Flow (cfs) |
| Q <sub>10</sub> Existing Condition  | 22.1                                                   | 0.59                            | 13.0                             |                     | 12%                | 5.4                                | 7.6             |
| Q <sub>10</sub> Proposed Condition  | 21.1                                                   | 1.16                            | 12.5                             | -0.5                | 21%                | 4.3                                | 8.2             |
| Q <sub>100</sub> Existing Condition | 22.1                                                   | 0.59                            | 25.6                             |                     | 12%                | 5.4                                | 20.2            |
| Q <sub>100</sub> Proposed Condition | 21.1                                                   | 1.16                            | 24.5                             | -1.1                | 21%                | 4.3                                | 20.2            |

TABLE 5

South System: At the southern outlet "XS OUT" the 10-year peak flow is calculated to increase by 4.5 cfs from 11.7 cfs to 16.2 cfs and the 100-year flow by 6.7 cfs from 23.2 cfs to 29.9 cfs. At the inlet to the double 72-inch pipe culvert (point "XS-0") the 10-year peak flow is calculated to increase by only 2 cfs from 199 cfs to 201 cfs. The smaller increase is due to the project site's location within the larger watershed. The 100-year peak flow at XS-0 is also calculated to increase by 2 cfs from 534 cfs to 536 cfs.

Therefore, although the site is located partially within the shaded area of the Dry Creek Watershed Map, the use of detention is not warranted. The outfall at XS-0 has runoff contributions from a much larger shed, with a comparatively larger peak in its hydrograph. This peak occurs after the peak from the hydrograph for this site. Consequently, onsite detention would not only fail to attenuate the larger peak, it would increase it slightly.

## WATER QUALITY

Construction of the project is expected to take place over a period of 1 year. During this period, water quality will be addressed with the erosion control plan prepared as part of the improvement plans and City standards relating to construction related activities. All of the construction phase Best Management Practices (BMP's) are expected to be implemented to reduce construction related storm water pollution prior to the first rainy season.

Proposed post construction stormwater treatment will include a vortechnics® or similar system in order to provide treatment as per the City of Rocklin Standards. Sheets U1 through U5 in **Appendix C** depict the proposed locations of the two water quality manholes. **Appendix D** contains information on the types of systems proposed with this project.

## DRAINAGE SYSTEMS

## Drainage Shed Delineation and Nomenclature

Proposed drainage sheds were delineated for each drainage system and further for each drainage inlet. The basis for the delineation of these sub-sheds was the drainage system design and nomenclature. Sub-shed names, therefore, utilize the drainage system number and letter, for instance: PN-2 (Proposed Shed North, drain inlet 2). The proposed drainage shed map is presented on **Figure 6**.

## Methodology

The determination of flows for specific drainage structures and drainage shed outfalls were completed using the Modified Rational Method (as outlined in the Placer County Flood Control and Water Conservation District Storm Water Management Manual). Individual drainage shed worksheets were developed for each drainage system sub-shed. Percent imperviousness was entered for each drainage shed. Additional data input into the worksheets consisted of empirical data derived directly from the drainage-shed maps. Data included estimates of overland flow distances, shallow collector flow distances and main channel distances and cross sections. The worksheets used a lookup table to emulate Figure 5-3A, 5-3B and 5-3C of the PCFCWCD manual.

Output from the worksheets included 10-year, 25-year and 100-year flows; these flows were then used along with physical characteristics of the existing and proposed drainage system to determine the 10-year and 100-yr hydraulic grade lines. A summary of the flows calculated for each watershed can be found in **Appendix B**.

## Hydraulic Grade Line Calculations

The flows calculated in the individual drainage shed worksheets were tabulated and are located in **Appendix B**. These worksheets calculate the head loss that occurs in each of the drainage systems. All of the drainage systems were assumed to have an unobstructed outfall. Therefore, the hydraulic grade line was determined by adding the head loss to the elevation of a 70% full pipe (10-year condition) and 100% full pipe (100-year conditions) on the downstream end. Manning's equation was used to compute the friction losses by solving for a value of the energy gradient, then computing the total friction losses as a product of the energy gradient and the length of the applicable pipe segment.

In addition to friction loses, entrance loses were determined and are a part of the summation of head (energy) losses occurring within the system. The head loss at an entrance to a conduit segment was calculated as follows,

$$h_k = KV^2/2g$$

Where,  $h_k$  = Entrance Head Loss (ft) V = Velocity in Conduit (ft/sec) K = Entrance Loss Coefficient 2g = 64.4 ft/sec<sup>2</sup>

Entrance Loss Coefficients (K) ranged from 0.2 to 0.9, for rounded entrances to square corners projecting respectively, but were generally input a 0.5 (square corners flush with head wall).

Freeboard was calculated by taking the top of grate or ground elevation minus the hydraulic grade line elevation.

## CONCLUSIONS

### **Incremental Runoff**

The project site is located on the boundary of areas identified where detention is recommended. Development of the project will result in a 2 cfs in peak runoff as measured at the two 72" diameter culverts underneath Sierra College Boulevard. However, the use of detention would further increase the peak due to the location of the project site in the lower portion of the drainage shed. Therefore, the use of detention is not recommended on this site provided there is capacity in the downstream drainage network.

### Drainage Systems

Existing Conditions: Hydraulic grade line (HGL) calculation tables are contained in **Appendix B**. The existing northern drainage system is demonstrated to lack capacity to convey the 100-year storm event, and the pipe inlet from shed XN-7 is calculated to surcharge 1.65 feet over the top of pipe elevation during the 10-year event. During the 100-year event, the capacity of the existing 15-inch and 18-inch diameter storm drain system in Rocklin Road and Sierra College Boulevard is exceeded and runoff is calculated to be conveyed overland along Rocklin Road from the point XN-6 to point XN-2 (the drain inlet located at the on Sierra College Boulevard at the junction with a 24-inch storm drain pipe which crosses Sierra College Boulevard). As noted earlier, this system collects drainage from offsite shed XN-7 which totals nearly 17 acres.

The southern system shows deficiency in the Rocklin Manor Apartments complex during the 100-year event at inlet XS-6. The remainder of the system has capacity for both the 10-year and 100-year events, with a calculated 2.6 feet of freeboard (measured from the low point in the road to the headwater elevation) at the entrance to the double 72-inch pipe culverts under Sierra College Boulevard south of the project site.

<u>Proposed Conditions</u>: The proposed project includes widening of Sierra College Boulevard from north of El Don Drive to Rocklin Road and improvements to both the northern and southern drainage systems are proposed. See offsite improvement plans, **Appendix C**.

For the northern system it is proposed as part of the improvements to widen the road and relocate the pipes and drain inlets, to upsize a portion of the system to adequately convey the 10-year and 100-year runoff without objectionable head. It is proposed to replace the existing 18-inch pipe with a 24-inch pipe

beginning at the manhole near the southeast corner of Rocklin Road and Sierra College Boulevard and ending at the existing 24-inch pipe which crosses Sierra College Boulevard near the midpoint of west edge of the site (point XN-2 to XN-1). The proposed improvements are shown on Sheets L5 and L6. With the improvements, the restriction of the 18-inch line is removed and the backwater into the Rocklin Road system is eliminated. The 100-year HGL is contained within the system and the calculated head at the XN-7 inlet is reduced from 14.98 to 9.75 feet. These are theoretical values indicating head required to deliver the peak flow; where headwater depth is unavailable over the top of pipe inlet the flow will be overland.

The southern drainage system is also proposed to be expanded as part of the improvements to widen Sierra College Boulevard and construct curb, gutter and sidewalk. The drainage improvements include extending the existing 27-inch pipe from its existing outlet south of Water Lily Lane and north of the gravel driveway to connect to two new drain inlets and discharging north of and near the double 72-inch pipe culvert inlet. A new drain inlet will be constructed at the sag point of Sierra College Boulevard and discharge south of and near the double 72-inch pipe culvert inlet.

As shown on the tables in **Appendix B**, the southern system has capacity for both the 10- and 100-year events with the exception of at the drain inlet labeled PS-2 where the 100-year HGL is calculated to be 0.04 feet above the grate elevation, indicating a minor portion of the flow (estimated at 0.35 cfs) will overtop the grate and flow in the gutter to the next point in the system, PS-1, which is calculated to have sufficient freeboard (1.8 feet) to receive the additional flow through the grate.

Per the PCFDWCD Storm Water Manual, for arterials and expressways the roadway may be used to convey 100-yr runoff to the extent that bike lanes are inundated and provided the depth of flow over sidewalks does not exceed 6 inches. As described previously, overland flow along Rocklin Road is calculated to be eliminated for up to the 100-year event and on Sierra College Boulevard between point PS-2 to PS-1 to be approximately 0.35 cfs. The capacity of the gutter and bike lane was calculated at approximately 3cfs.

At the inlet to the double 72-inch pipe culvert (point XS-0), the freeboard for the proposed condition is calculated to be 6.32 feet in the 10-year and 2.54 feet in the 100-year. As previously discussed, the increase in peak flow at this location is calculated to be 2 cfs for both the 10-year and the 100-year events. Using the FHWA nomograph for corrugated metal pipe culverts with inlet control (Bureau of Public Roads, 1983), the headwater depth is estimated to increase by 0.06' over the existing condition with 10-yr and 100-yr freeboard calculated to be 6.38 feet 2.60 feet, respectively. The drainage system to Aguilar Creek including the existing double 72-inch pipe culvert under Sierra College Boulevard is calculated to have capacity for the project improvements.

## **APPENDIX A**

- 1. Site Location on USGS Quad Sheet
- Aerial Photo with Site Boundary
  Table 8-1 PCFCD Manning N for Stream Channels
  Table 5-3 PCFCD Constant Infiltration Rates
- 5. NRCS Soil Information



INGLE L

Purple tint indicates extension of urban areas



THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS FOR SALE BY U.S. GEOLOGICAL SURVEY, DENVER, COLORADO 80225, OR RESTON, VIRGINIA 22092 A FOLDER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOLIS IS AVALABLE ON REQUEST

ROAD CLASSIFICATION Light-duty Heavy-duty Medium-duty Unimproved dirt \_\_\_\_\_ Interstate Route ROCKLIN, CALIF. SW/4 AUBURN 15 QUADRANGLE N3845-W12107.5/7.5 Revisions shown in purple and woodland compiled from aerial photographs taken 1978 and other source data This information not field checked. Map edited 1981 1967 PHOTOREVISED 1981 DMA 1761 I SW-SERIES V895



Aerial Photo with Site Boundary

| MANNI                                              | TABLE 8-1<br>NG N FOR STREAMS AND CHANN                                                             | ELS (24)                 |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|
|                                                    | UNIFORM CHANNELS                                                                                    |                          |
| D                                                  | escription                                                                                          | n                        |
| Concrete                                           |                                                                                                     | 0.012 - 0.016            |
| Earth                                              |                                                                                                     | 0.017 - 0.022            |
| Grass                                              |                                                                                                     | 0.020 - 0.025            |
| Rock, Rubble                                       |                                                                                                     | 0.025 - 0.045            |
|                                                    | NATURAL STREAMS-CHANNELS                                                                            |                          |
| Channel <i>n</i> is a compose                      | site computed from the component <i>n</i> and <i>k</i> values in<br>$n = k (n_1 + n_2 + n_3 + n_4)$ | in the table as follows: |
| Material involved (n.)                             | Farth                                                                                               | 0.020                    |
| Material involved (vij)                            | Book Cut                                                                                            | 0.025                    |
|                                                    | Fine Gravel                                                                                         | 0.025                    |
|                                                    | Course Gravel                                                                                       | 0.024                    |
| Degree of Irregularity (n.)                        | Smooth                                                                                              | 0.028                    |
|                                                    | Minor                                                                                               | 0.005                    |
|                                                    | Moderate                                                                                            | 0.010                    |
|                                                    | Severe                                                                                              | 0.020                    |
| Relative effect of Obstructions (n.)               | Negligible                                                                                          | 0.000                    |
|                                                    | Minor                                                                                               | 0.010 - 0.015            |
|                                                    | Appreciable                                                                                         | 0.020 - 0.030            |
|                                                    | Severe                                                                                              | 0.040 - 0.060            |
| Vegetation $(n_4)$                                 | Low                                                                                                 | 0.005 - 0.010            |
|                                                    | Medium                                                                                              | 0.010 - 0.025            |
|                                                    | High                                                                                                | 0.025 - 0.050            |
|                                                    | Very High                                                                                           | 0.050 - 0.100            |
| Degree of Meandering (k)                           | Minor                                                                                               | 1.000                    |
| nya na na mana na | Appreciable                                                                                         | 1.150                    |
|                                                    | Severe                                                                                              | 1 300                    |

#### TABLE 5-3

#### CONSTANT INFILTRATION RATES' FOR HYDROLOGIC SOIL-COVER COMPLEXES

| <u>Cover Type</u>                                                |                                       |                                                 | Quality of<br>Cover (2)    | Α                 | Soil G<br>B         | roup<br>C         | D                 |
|------------------------------------------------------------------|---------------------------------------|-------------------------------------------------|----------------------------|-------------------|---------------------|-------------------|-------------------|
| NATURAL COVERS                                                   | -                                     |                                                 |                            |                   |                     |                   |                   |
| Bare - Rockland, en<br>newly-graded area                         | oded and<br>s                         |                                                 |                            | .10               | .02                 | .01               | .01               |
| Grass,Annual or Pe                                               | rennial                               |                                                 | Poor<br>Fair<br>Good       | .16<br>:31<br>.41 | .09<br>.16<br>.22   | .06<br>.09<br>.12 | .04<br>.07<br>.09 |
| Meadows - Areas v<br>high water table, p<br>vegetation is sod-fe | with seasor<br>rincipal<br>orming gra | nally<br>ss                                     | Poor<br>Fair<br>Good       | .20<br>.30<br>.50 | .11<br>.15<br>.24   | .06<br>.09<br>.17 | .05<br>.07<br>.14 |
| Chaparral,Broadle<br>(Manzanita and sc                           | eaf<br>rub oak)                       |                                                 | Poor<br>Fair<br>Good       | .28<br>.40<br>.49 | .15<br>.20<br>.25   | .09<br>.12<br>.14 | .06<br>.08<br>.10 |
| Open Brush - Soft<br>buckwheat, sage, e                          | wood shrub<br>etc.                    | DS,                                             | Poor<br>Fair<br>Good       | .21<br>.34<br>.39 | .11<br>.18<br>.20   | .07<br>.11<br>.12 | .05<br>.07<br>.08 |
| Woodland - Conife<br>trees predominate.<br>is at least 50%)      | rous or bro<br>. Canopy d             | oadleaf<br>ensity                               | Poor<br>Fair<br>Good       | .35<br>.44<br>.53 | .18<br>(.22)<br>.26 | .11<br>.13<br>.15 | .07<br>.09<br>.11 |
| Woodland, Grass<br>(Coniferous or broa<br>with canopy densit     | adleaf trees<br>y from 20 t           | s<br>o 50%)                                     | Poor<br>Fair<br>Good       | .25<br>.36<br>.47 | .13<br>.18<br>.24   | .08<br>.11<br>.14 | .06<br>.08<br>.09 |
| URBAN COVERS -                                                   |                                       |                                                 |                            |                   |                     |                   |                   |
| Residential or Com<br>Landscaping (Lawi                          | nmercial<br>n, shrubs, e              | etc.)                                           | Good                       | .48               | .25                 | .16               | .12               |
| Open Space                                                       | Poor (<br>Fair (<br>Good (            | grass cover <<br>grass cover 5<br>grass cover > | : 50%)<br>0-75%)<br>· 75%) | .26<br>.31<br>.41 | .09<br>.16<br>.22   | .06<br>.09<br>.12 | .04<br>.07<br>.09 |

1. Loss rates in inches/hour

2. Use appropriate ground cover designation



National Cooperative Soil Survey

**Conservation Service** 

6/16/2015 Page 1 of 4



## Hydrologic Soil Group

| Hydrologic                | Soil Group— Summary b                                  | oy Map Unit — Placer Cou | unty, California, Western I | Part (CA620)   |
|---------------------------|--------------------------------------------------------|--------------------------|-----------------------------|----------------|
| Map unit symbol           | Map unit name                                          | Rating                   | Acres in AOI                | Percent of AOI |
| 106                       | Andregg coarse sandy<br>loam, 2 to 9 percent<br>slopes | В                        | 8.3                         | 100.0%         |
| Totals for Area of Intere | est                                                    |                          | 8.3                         | 100.0%         |

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## **Rating Options**

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

## **APPENDIX B**

- Peak Flow and Hydraulic Grade Line Calculations
  Q<sub>10</sub> and Q<sub>100</sub> Headwater Depth Calculations for Double 72-Inch Pipe Culverts
  Sub-Shed Response Time Worksheets

#### SIERRA GATEWAY APARTMENTS PEAK FLOW & HYDRAULIC GRADE LINE CALCULATIONS (10-yr Summary PRE-DEVELOPMENT)

#### North System

|           | •          |          |         |           |          |                                     |           |              |              |                   |                    |                 |                   |              |              |        |         |       |      |          |     |                   |                   |         |               |               |                |                 |        |                |
|-----------|------------|----------|---------|-----------|----------|-------------------------------------|-----------|--------------|--------------|-------------------|--------------------|-----------------|-------------------|--------------|--------------|--------|---------|-------|------|----------|-----|-------------------|-------------------|---------|---------------|---------------|----------------|-----------------|--------|----------------|
| Upstream  | Downstream | Shod     | Respons | e Time    |          | Unit Peak<br>Discharge <sup>1</sup> | Shed Name | Shed<br>Area | Shed<br>Imp. | Tributary<br>Area | Trib. Imp.<br>Area | Infilt.<br>Rate | Infilt.<br>Factor | Peak<br>Flow | Pipe<br>Size | Length | Slope   | n     | А    | v        | к   | H(e) <sup>2</sup> | H(K) <sup>3</sup> | H(L)    | D/S<br>Invert | U/S<br>Invert | Top of<br>Pipe | Rim or<br>Grate | HGL    | Free-<br>board |
| Structure | Structure  | Sileu    | rh      |           | Tr (min) | j.                                  | _         |              | A            |                   |                    |                 |                   |              |              |        |         |       |      |          |     |                   |                   |         |               |               |                |                 |        | <u> </u>       |
|           |            | Tr (min) | L (ft)  | trp (min) | ``'      | (cfs/acre)                          |           | (acre)       | (acre)       | (acre)            | (%)                | (in/hr)         |                   | (cfs)        | (in)         | (ft)   | (ft/ft) |       | (sf) | (ft/sec) |     |                   |                   | (He+Hk) | (ft)          | (ft)          | (ft)           | (ft)            | (ft)   | (ft)           |
|           |            |          |         |           |          |                                     |           |              |              |                   |                    |                 |                   |              |              |        |         |       |      |          |     |                   |                   |         |               |               |                |                 | 322.70 | 1              |
| XN-1      | XN-OUT     | 41.43    | 180     | 0.75      | 42.18    | 0.59                                | XN SHED 1 | 0.18         | 100%         | 22.05             | 12%                | 0.17            | 0.28              | 7.6          | 24           | 150    | 0.012   | 0.015 | 3.14 | 2.43     | 0.2 | 0.228             | 0.018             | 0.246   | 319.50        | 321.30        | 323.30         | 329.21          | 322.95 | 6.26           |
| XN-2      | XN-1       | 40.20    | 295     | 1.23      | 41.43    | 0.60                                | XN SHED 2 | 0.39         | 100%         | 21.87             | 12%                | 0.17            | 0.28              | 7.6          | 24           | 180    | 0.0064  | 0.015 | 3.14 | 2.42     | 0.8 | 0.271             | 0.073             | 0.344   | 321.30        | 322.46        | 324.46         | 330.04          | 323.29 | 6.75           |
| XN-3      | XN-2       | 40.08    | 29      | 0.12      | 40.20    | 0.60                                | XN SHED 3 | 0.60         | 100%         | 18.01             | 11%                | 0.17            | 0.28              | 6.3          | 18           | 295    | 0.0201  | 0.015 | 1.77 | 3.57     | 0.5 | 1.415             | 0.099             | 1.514   | 322.46        | 328.39        | 329.89         | 338.78          | 329.89 | 8.89           |
| XN-4      | XN-3       | 39.00    | 260     | 1.08      | 40.08    | 0.60                                |           |              | 100%         | 17.41             | 8%                 | 0.17            | 0.29              | 5.8          | 18           | 29     | 0.0259  | 0.015 | 1.77 | 3.31     | 0.5 | 0.120             | 0.085             | 0.205   | 328.39        | 329.14        | 330.64         | 339.24          | 330.09 | 9.15           |
| XN-5      | XN-4       | 39.00    | 244     | 1.02      | 40.02    | 0.60                                |           |              | 100%         | 17.41             | 8%                 | 0.17            | 0.29              | 5.8          | 18           | 260    | 0.0181  | 0.015 | 1.77 | 3.31     | 0.8 | 1.072             | 0.136             | 1.208   | 329.14        | 333.85        | 335.35         | 342.57          | 335.35 | 7.22           |
| XN-6      | XN-5       | 10.00    | 0       | 0.00      | 10.00    | 2.10                                | XN SHED 6 | 0.52         | 100%         | 0.52              | 100%               | 0.06            | 0.10              | 1.1          | 15           | 244    | 0.017   | 0.015 | 1.23 | 0.89     | 0.5 | 0.093             | 0.006             | 0.099   | 333.85        | 338.01        | 339.26         | 345.81          | 339.26 | 6.55           |
| XN-7      | XN-5       | 39.00    | 0       | 0.00      | 39.00    | 0.62                                | XN SHED 7 | 16.89        | 5%           | 16.89             | 5%                 | 0.17            | 0.29              | 5.8          | 18           | 89     | 0.0073  | 0.015 | 1.77 | 3.27     | 0.2 | 0.359             | 0.033             | 0.392   | 334.35        | 335.00        | 336.50         | 338.00          | 339.65 | -1.65          |
| XN-8      | XN-2       | 14.00    | 0       | 0.00      | 14.00    | 1.78                                | XN SHED 8 | 3.47         | 5%           | 3.47              | 5%                 | 0.17            | 0.29              | 5.2          | 24           | 62     | 0.0195  | 0.015 | 3.14 | 1.66     | 0.2 | 0.044             | 0.009             | 0.052   | 322.46        | 323.67        | 325.67         | 326.67          | 325.67 | 1.00           |

#### South System

| Upstream  | Downstream |          | Response | e Time    |          | Unit Peak              |           | Shed   | Shed   | Tributary | Trib. Imp. | Infilt. | Infilt. | Peak  | Pipe | Length | Slope   | n     | Α     | v        | к   | H(e) <sup>2</sup> | н(к) <sup>3</sup> | H(L)    | D/S    | U/S    | Top of | Rim or | HGI 5  | Free- |
|-----------|------------|----------|----------|-----------|----------|------------------------|-----------|--------|--------|-----------|------------|---------|---------|-------|------|--------|---------|-------|-------|----------|-----|-------------------|-------------------|---------|--------|--------|--------|--------|--------|-------|
| Structure | Structure  | Shed     | Pip      | e         | Tr (min) | Discharge <sup>1</sup> | Shed Name | Area   | imp.   | Area      | Area       | Rate    | Factor  | Flow  | Size | Longin | Cicpo   |       | ~     | •        |     | 11(0)             |                   | (_)     | Invert | Invert | Pipe   | Grate  | HOL    | board |
|           |            | Tr (min) | L (ft)   | trp (min) |          | (cfs/acre)             |           | (acre) | (acre) | (acre)    | (%)        | (in/hr) |         | (cfs) | (in) | (ft)   | (ft/ft) |       | (sf)  | (ft/sec) |     |                   |                   | (He+Hk) | (ft)   | (ft)   | (ft)   | (ft)   | (ft)   | (ft)  |
| n/a       | XS-0       | 48.40    | 0        | 0         | 48.40    | 0.56                   | XS SHED 0 | 687.70 | 5%     | 697.61    | 6%         | 0.17    | 0.29    | 198.7 | 72   | 136    | 0.022   | 0.015 | 28.27 | 7.03     | 0.2 | 0.398             | 0.153             | 0.552   | 302    | 305    | 311.00 | 315.22 | 308.84 | 6.38  |
| XS-7      | XS-OUT     | 18.14    | 410      | 1.71      | 19.85    | 1.30                   | XS SHED 7 | 1.14   | 100%   | 9.91      | 44%        | 0.13    | 0.21    | 11.7  | n/a  | n/a    | n/a     | n/a   | n/a   | n/a      | n/a | n/a               | n/a               | n/a     | n/a    | n/a    | n/a    | n/a    | n/a    | n/a   |
| XS-1      | XS-OUT     | 17.76    | 91       | 0.38      | 18.14    | 1.40                   | XS SHED 1 | 1.82   | 20%    | 8.77      | 36%        | 0.14    | 0.23    | 11.0  | 27   | 410    | 0.005   | 0.015 | 3.98  | 2.77     | 0.5 | 0.689             | 0.059             | 0.748   | 314.93 | 315.24 | 317.49 | 319.84 | 317.49 | 2.35  |
| XS-2      | XS-1       | 16.09    | 401      | 1.67      | 17.76    | 1.50                   | XS SHED 2 | 2.64   | 10%    | 6.96      | 41%        | 0.13    | 0.22    | 9.5   | 24   | 91     | 0.0112  | 0.015 | 3.14  | 3.03     | 0.5 | 0.215             | 0.071             | 0.286   | 315.24 | 316.29 | 318.29 | 322.49 | 317.78 | 4.71  |
| XS-3      | XS-2       | 15.77    | 76       | 0.32      | 16.09    | 1.60                   |           |        | 75%    | 4.20      | 59%        | 0.11    | 0.18    | 6.4   | 24   | 401    | 0.0129  | 0.015 | 3.14  | 2.04     | 0.5 | 0.428             | 0.032             | 0.461   | 316.29 | 321.46 | 323.46 | 329.46 | 323.46 | 6.00  |
| XS-4      | XS-3       | 15.43    | 81       | 0.34      | 15.77    | 1.70                   |           |        | 75%    | 4.20      | 59%        | 0.11    | 0.18    | 6.8   | 18   | 76     | 0.0158  | 0.015 | 1.77  | 3.86     | 0.5 | 0.428             | 0.116             | 0.544   | 322.16 | 323.42 | 324.92 | 334.42 | 324.00 | 10.42 |
| XS-5      | XS-4       | 15.00    | 103      | 0.43      | 15.43    | 1.70                   | XS SHED 5 | 0.92   | 75%    | 4.20      | 59%        | 0.11    | 0.18    | 6.8   | 18   | 81     | 0.015   | 0.015 | 1.77  | 3.86     | 0.5 | 0.456             | 0.116             | 0.572   | 326.82 | 328.07 | 329.57 | 334.39 | 329.57 | 4.82  |
| XS-6      | XS-5       | 15.00    | 0        | 0         | 15.00    | 1.70                   | XS SHED 6 | 3.28   | 55%    | 3.28      | 55%        | 0.11    | 0.19    | 5.3   | 12   | 103    | 0.015   | 0.015 | 0.79  | 6.74     | 0.5 | 3.029             | 0.353             | 3.382   | 328.07 | 329.63 | 330.63 | 335.52 | 332.95 | 2.57  |
| XS-8      | XS-2       | 10.00    | 0        | 0         | 10.00    | 2.10                   | XS SHED 8 | 0.12   | 50%    | 0.12      | 50%        | 0.12    | 0.20    | 0.2   | 12   | 26     | 0.015   | 0.015 | 0.79  | 0.31     | 0.5 | 0.002             | 0.001             | 0.002   | 316.29 | 317.00 | 318.00 | 322.66 | 317.78 | 4.88  |

Notes 1) Figure 5-3A Placer County Storm Water Management Manual 2) Energy Loss 3) Junction Loss 4) Initial HGL assumes 70% full pipe 5) Initial HGL based on inlet HW/D for 10-yr Q of 198.7 cfs = 0.64 (FHWA HEC-5 Hydraulic Charts for Selection of Highway Culverts)



#### SIERRA GATEWAY APARTMENTS PEAK FLOW & HYDRAULIC GRADE LINE CALCULATIONS (100-yr Summary PRE-DEVELOPMENT)

#### North System

|                       |                         |          | Respons | e Time    |          | Unit Peak              |           | Shed   | Shed   | Tributary | Trib. Imp. | Infilt. | Infilt. | Peak  | Pipe |        |         |       | _    |          |     | 2                 | 2                 |         | D/S    | U/S    | Top of | Rim or   |        | Free-  |
|-----------------------|-------------------------|----------|---------|-----------|----------|------------------------|-----------|--------|--------|-----------|------------|---------|---------|-------|------|--------|---------|-------|------|----------|-----|-------------------|-------------------|---------|--------|--------|--------|----------|--------|--------|
| Upstream<br>Structure | Downstream<br>Structure | Shed     | Pi      | ре        | Tr (min) | Discharge <sup>1</sup> | Shed Name | Area   | Imp.   | Area      | Area       | Rate    | Factor  | Flow  | Size | Length | Slope   | n     | A    | V        | К   | H(e) <sup>2</sup> | H(K) <sub>3</sub> | H(L)    | Invert | Invert | Pipe   | Grate    | HGL⁴   | board  |
|                       |                         | Tr (min) | L (ft)  | trp (min) |          | (cfs/acre)             |           | (acre) | (acre) | (acre)    | (%)        | (in/hr) |         | (cfs) | (in) | (ft)   | (ft/ft) |       | (sf) | (ft/sec) |     |                   |                   | (He+Hk) | (ft)   | (ft)   | (ft)   | (ft)     | (ft)   | (ft)   |
|                       |                         |          |         |           |          |                        |           |        |        |           |            |         |         |       |      |        |         |       |      |          |     |                   |                   |         |        |        |        | <u> </u> | 323.30 |        |
| XN-1                  | XN-OUT                  | 41.43    | 180     | 0.75      | 42.18    | 1.16                   | XN SHED 1 | 0.18   | 100%   | 22.05     | 12%        | 0.17    | 0.28    | 20.2  | 24   | 150    | 0.012   | 0.015 | 3.14 | 6.43     | 0.2 | 1.593             | 0.128             | 1.722   | 319.50 | 321.30 | 323.30 | 329.21   | 325.02 | 4.19   |
| XN-2                  | XN-1                    | 40.20    | 295     | 1.23      | 41.43    | 1.18                   | XN SHED 2 | 0.39   | 100%   | 21.87     | 12%        | 0.17    | 0.28    | 20.4  | 24   | 180    | 0.006   | 0.015 | 3.14 | 6.49     | 0.8 | 1.950             | 0.524             | 2.474   | 321.30 | 322.46 | 324.46 | 330.04   | 327.50 | 2.54   |
| XN-3                  | XN-2                    | 40.08    | 29      | 0.12      | 40.20    | 1.20                   | XN SHED 3 | 0.60   | 100%   | 18.01     | 11%        | 0.17    | 0.28    | 17.1  | 18   | 295    | 0.020   | 0.015 | 1.77 | 9.68     | 0.5 | 10.425            | 0.728             | 11.153  | 322.46 | 328.39 | 329.89 | 338.78   | 338.65 | 0.13   |
| XN-4                  | XN-3                    | 39.00    | 260     | 1.08      | 40.08    | 1.20                   |           |        | 100%   | 17.41     | 8%         | 0.17    | 0.29    | 16.3  | 18   | 29     | 0.026   | 0.015 | 1.77 | 9.22     | 0.5 | 0.929             | 0.660             | 1.589   | 328.39 | 329.14 | 330.64 | 339.24   | 340.24 | -1.00  |
| XN-5                  | XN-4                    | 39.00    | 244     | 1.02      | 40.02    | 1.20                   |           |        | 100%   | 17.41     | 8%         | 0.17    | 0.29    | 16.3  | 18   | 260    | 0.018   | 0.015 | 1.77 | 9.22     | 0.8 | 8.329             | 1.056             | 9.385   | 329.14 | 333.85 | 335.35 | 342.57   | 349.62 | -7.05  |
| XN-6                  | XN-5                    | 10.00    | 0       | 0.00      | 10.00    | 3.80                   | XN SHED 6 | 0.52   | 100%   | 0.52      | 100%       | 0.06    | 0.10    | 2.0   | 15   | 244    | 0.017   | 0.015 | 1.23 | 1.61     | 0.5 | 0.304             | 0.020             | 0.324   | 333.85 | 338.01 | 339.26 | 345.81   | 349.95 | -4.14  |
| XN-7                  | XN-5                    | 39.00    | 0       | 0.00      | 39.00    | 1.23                   | XN SHED 7 | 16.89  | 5%     | 16.89     | 5%         | 0.17    | 0.29    | 16.1  | 18   | 89     | 0.007   | 0.015 | 1.77 | 9.10     | 0.2 | 2.778             | 0.257             | 3.036   | 334.35 | 335.00 | 336.50 | 338.00   | 352.98 | -14.98 |
| XN-8                  | XN-2                    | 14.00    | 0       | 0.00      | 14.00    | 3.24                   | XN SHED 8 | 3.47   | 5%     | 3.47      | 5%         | 0.17    | 0.29    | 10.3  | 24   | 62     | 0.020   | 0.015 | 3.14 | 3.27     | 0.2 | 0.170             | 0.033             | 0.204   | 322.46 | 323.67 | 325.67 | 326.67   | 327.70 | -1.03  |

#### South System

| Upstream  | Downstream |          | Respons | e Time    |          | Unit Peak              |           | Shed   | Shed   | Tributary | Trib. Imp. | Infilt. | Infilt. | Peak  | Pipe    | l enath | Slope   | n     | Δ     | v        | к   | H(a) <sup>2</sup> | н(к) <sup>3</sup> | на)     | D/S    | U/S    | Top of | Rim or |        | Free- |
|-----------|------------|----------|---------|-----------|----------|------------------------|-----------|--------|--------|-----------|------------|---------|---------|-------|---------|---------|---------|-------|-------|----------|-----|-------------------|-------------------|---------|--------|--------|--------|--------|--------|-------|
| Structure | Structure  | Shed     | Pip     | e         | Tr (min) | Discharge <sup>1</sup> | Shed Name | Area   | Imp.   | Area      | Area       | Rate    | Factor  | Flow  | Size    | Longin  | Cicpo   |       | ~     | •        |     | 11(0)             |                   | (=)     | Invert | Invert | Pipe   | Grate  |        | board |
|           |            | Tr (min) | L (ft)  | trp (min) |          | (cfs/acre)             |           | (acre) | (acre) | (acre)    | (%)        | (in/hr) |         | (cfs) | (in)    | (ft)    | (ft/ft) |       | (sf)  | (ft/sec) |     |                   |                   | (He+Hk) | (ft)   | (ft)   | (ft)   | (ft)   | (ft)   | (ft)  |
| XS-0      | XS-0       | 48.40    | 0       | 0         | 48.40    | 1.04                   | XS SHED 0 | 687.70 | 5%     | 697.61    | 6%         | 0.17    | 0.29    | 533.5 | 72 (x2) | 136     | 0.022   | 0.015 | 56.55 | 9.43     | 0.2 | 2.872             | 0.276             | 3.149   | 302    | 305    | 311.00 | 315.22 | 312.62 | 2.60  |
| XS-7      | XS-OUT     | 18.14    | 410     | 1.71      | 19.85    | 2.46                   | XS SHED 7 | 1.14   | 100%   | 9.91      | 44%        | 0.13    | 0.21    | 23.2  | n/a     | n/a     | n/a     | n/a   | n/a   | n/a      | n/a | n/a               | n/a               | n/a     | n/a    | n/a    | n/a    | n/a    | n/a    | n/a   |
| XS-1      | XS-OUT     | 17.76    | 91      | 0.38      | 18.14    | 2.62                   | XS SHED 1 | 1.82   | 20%    | 8.77      | 36%        | 0.14    | 0.23    | 21.7  | 27      | 410     | 0.001   | 0.015 | 3.98  | 5.46     | 0.5 | 2.681             | 0.231             | 2.912   | 314.93 | 315.24 | 317.49 | 319.84 | 315.53 | 4.31  |
| XS-2      | XS-1       | 16.09    | 401     | 1.67      | 17.76    | 2.78                   | XS SHED 2 | 2.64   | 10%    | 6.96      | 41%        | 0.13    | 0.22    | 18.4  | 24      | 91      | 0.012   | 0.015 | 3.14  | 5.87     | 0.5 | 0.804             | 0.267             | 1.071   | 315.24 | 316.29 | 318.29 | 322.49 | 316.60 | 5.89  |
| XS-3      | XS-2       | 15.77    | 76      | 0.32      | 16.09    | 2.94                   |           |        | 75%    | 4.20      | 59%        | 0.11    | 0.18    | 12.0  | 24      | 401     | 0.013   | 0.015 | 3.14  | 3.83     | 0.5 | 1.512             | 0.114             | 1.626   | 316.29 | 321.46 | 323.46 | 329.46 | 323.46 | 6.00  |
| XS-4      | XS-3       | 15.43    | 81      | 0.34      | 15.77    | 3.10                   |           |        | 75%    | 4.20      | 59%        | 0.11    | 0.18    | 12.7  | 18      | 76      | 0.017   | 0.015 | 1.77  | 7.19     | 0.5 | 1.482             | 0.402             | 1.883   | 322.16 | 323.42 | 324.92 | 334.42 | 325.34 | 9.08  |
| XS-5      | XS-4       | 15.00    | 103     | 0.43      | 15.43    | 3.10                   | XS SHED 5 | 0.92   | 75%    | 4.20      | 59%        | 0.11    | 0.18    | 12.7  | 18      | 81      | 0.015   | 0.015 | 1.77  | 7.19     | 0.5 | 1.579             | 0.402             | 1.981   | 326.82 | 328.07 | 329.57 | 334.39 | 329.57 | 4.82  |
| XS-6      | XS-5       | 15.00    | 0       | 0         | 15.00    | 3.10                   | XS SHED 6 | 3.28   | 55%    | 3.28      | 55%        | 0.11    | 0.19    | 9.9   | 12      | 103     | 0.015   | 0.015 | 0.79  | 12.59    | 0.5 | 10.564            | 1.230             | 11.794  | 328.07 | 329.63 | 330.63 | 335.52 | 341.36 | -5.84 |
| XS-8      | XS-2       | 10.00    | 0       | 0         | 10.00    | 3.80                   | XS SHED 8 | 0.12   | 50%    | 0.12      | 50%        | 0.12    | 0.20    | 0.4   | 12      | 26      | 0.027   | 0.015 | 0.79  | 0.57     | 0.5 | 0.005             | 0.002             | 0.008   | 316.29 | 317.00 | 318.00 | 322.66 | 318.00 | 4.66  |

Notes 1) Figure 5-3A Placer County Storm Water Management Manual 2) Energy Loss 3) Junction Loss 4) Initial HGL assumes 100% full pipe 5) Initial HGL based on inlet HW/D for 100-yr Q of 533.5 cfs = 1.27 (FHWA HEC-5 Hydraulic Charts for Selection of Highway Culverts)



## SIERRA GATEWAY APARTMENTS PEAK FLOW & HYDRAULIC GRADE LINE CALCULATIONS (10-yr Summary POST DEVELOPMENT)

North System

| Upstream  | Downstream |          | Respons | e Time    |          | Unit Peak  | Shed Name  | Shed   | Tributary | Imp. | Infilt. | Infilt. | Peak  | Pipe | Length | Slope   | n     | А    | v        | к   | H(e) <sup>2</sup> | H(K) <sup>3</sup> | H(L)    | D/S    | U/S    | Top of | Rim or | HGL⁴   | Free- |
|-----------|------------|----------|---------|-----------|----------|------------|------------|--------|-----------|------|---------|---------|-------|------|--------|---------|-------|------|----------|-----|-------------------|-------------------|---------|--------|--------|--------|--------|--------|-------|
| Structure | Structure  | Shed     | Pip     | pe        | Tr (min) | Discharge  | Shed Name  | Area   | Area      | Area | Rate    | Factor  | FIOW  | Size | _      |         |       |      |          |     |                   | . ,               |         | Invert | Invert | Ріре   | Grate  |        | board |
|           |            | Tr (min) | L (ft)  | trp (min) |          | (cfs/acre) |            | (acre) | (acre)    | (%)  | (in/hr) |         | (cfs) | (in) | (ft)   | (ft/ft) |       | (sf) | (ft/sec) |     |                   |                   | (He+Hk) | (ft)   | (ft)   | (ft)   | (ft)   | (ft)   | (ft)  |
|           |            |          |         |           |          |            |            |        |           |      |         |         |       |      |        |         |       |      |          |     |                   |                   |         |        |        |        |        | 322.70 |       |
| XN-1      | XN-OUT     | 41.60    | 122.00  | 0.51      | 42.11    | 0.59       | XN SHED 1  | 0.18   | 21.14     | 21%  | 0.15    | 0.26    | 8.2   | 24   | 150    | 0.012   | 0.015 | 3.14 | 2.60     | 0.5 | 0.260             | 0.052             | 0.312   | 319.50 | 321.30 | 323.30 | 329.21 | 323.30 | 5.91  |
| PN1       | XN1        | 41.25    | 83.00   | 0.35      | 41.60    | 0.60       | JUNCTION   | 0.00   | 20.96     | 21%  | 0.16    | 0.26    | 8.1   | 24   | 122    | 0.010   | 0.015 | 3.14 | 2.59     | 0.5 | 0.210             | 0.052             | 0.262   | 321.30 | 322.46 | 324.46 | 330.04 | 324.46 | 5.58  |
| PN2       | PN1        | 40.37    | 211.00  | 0.88      | 41.25    | 0.60       | PN SHED 2  | 0.45   | 2.78      | 83%  | 0.08    | 0.13    | 1.6   | 24   | 83     | 0.007   | 0.015 | 3.14 | 0.51     | 0.5 | 0.005             | 0.002             | 0.007   | 322.46 | 323.05 | 325.05 | 330.47 | 325.05 | 5.42  |
| PN3       | PN2        | 11.96    | 40.00   | 0.17      | 12.13    | 1.94       | PN SHED 3  | 0.09   | 2.33      | 80%  | 0.08    | 0.14    | 4.5   | 18   | 10     | 0.311   | 0.015 | 1.77 | 2.52     | 0.9 | 0.024             | 0.089             | 0.113   | 323.05 | 326.16 | 327.66 | 332.16 | 327.66 | 4.50  |
| PN4       | PN3        | 11.90    | 14.00   | 0.06      | 11.96    | 2.02       | WQMH       | 0.00   | 2.24      | 83%  | 0.08    | 0.14    | 4.5   | 18   | 40     | 0.000   | 0.015 | 1.77 | 2.53     | 0.5 | 0.097             | 0.050             | 0.146   | 327.75 | 327.77 | 329.27 | 335.99 | 329.27 | 6.72  |
| PN5       | PN4        | 11.77    | 30.00   | 0.13      | 11.90    | 2.02       | PN SHED 5  | 0.18   | 2.24      | 83%  | 0.08    | 0.14    | 4.5   | 18   | 14     | 0.011   | 0.015 | 1.77 | 2.53     | 1.3 | 0.034             | 0.129             | 0.163   | 327.90 | 328.05 | 329.55 | 336.13 | 329.55 | 6.58  |
| PN6       | PN5        | 11.44    | 79.00   | 0.33      | 11.77    | 2.02       | JUNCTION   | 0.00   | 2.06      | 82%  | 0.08    | 0.14    | 4.1   | 18   | 30     | 0.018   | 0.015 | 1.77 | 2.33     | 0.2 | 0.061             | 0.017             | 0.078   | 328.05 | 328.58 | 330.08 | 336.32 | 330.08 | 6.24  |
| PN7       | PN6        | 11.09    | 83.00   | 0.35      | 11.44    | 2.02       | JUNCTION   | 0.00   | 1.46      | 77%  | 0.09    | 0.15    | 2.9   | 12   | 90     | 0.018   | 0.015 | 0.79 | 3.69     | 0.9 | 0.795             | 0.191             | 0.986   | 328.58 | 330.20 | 331.20 | 339.37 | 331.20 | 8.17  |
| PN8       | PN7        | 10.69    | 96.00   | 0.40      | 11.09    | 2.02       | JUNCTION   | 0.00   | 1.18      | 80%  | 0.08    | 0.14    | 2.4   | 12   | 83     | 0.017   | 0.015 | 0.79 | 2.99     | 1.1 | 0.481             | 0.153             | 0.634   | 330.20 | 331.60 | 332.60 | 339.50 | 332.60 | 6.90  |
| PN9       | PN8        | 10.36    | 78.00   | 0.33      | 10.69    | 2.10       | JUNCTION   | 0.00   | 0.71      | 79%  | 0.09    | 0.14    | 1.5   | 12   | 96     | 0.019   | 0.015 | 0.79 | 1.87     | 1.1 | 0.218             | 0.060             | 0.277   | 331.59 | 333.42 | 334.42 | 340.52 | 334.42 | 6.10  |
| PN10      | PN9        | 10.06    | 73.00   | 0.30      | 10.36    | 2.10       | JUNCTION   | 0.00   | 0.57      | 77%  | 0.09    | 0.15    | 1.2   | 12   | 78     | 0.018   | 0.015 | 0.79 | 1.50     | 1.1 | 0.114             | 0.038             | 0.152   | 333.42 | 334.81 | 335.81 | 340.33 | 335.81 | 4.52  |
| PN11      | PN10       | 10.00    | 14.00   | 0.06      | 10.06    | 2.10       | PN SHED 11 | 0.09   | 0.18      | 90%  | 0.07    | 0.12    | 0.4   | 12   | 73     | 0.018   | 0.015 | 0.79 | 0.48     | 0.9 | 0.011             | 0.003             | 0.014   | 334.81 | 336.14 | 337.14 | 341.78 | 337.14 | 4.64  |
| PN12      | PN11       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 12 | 0.09   | 0.09      | 100% | 0.06    | 0.10    | 0.2   | 12   | 14     | 0.018   | 0.015 | 0.79 | 0.24     | 0.5 | 0.001             | 0.000             | 0.001   | 336.14 | 336.39 | 337.39 | 341.37 | 337.39 | 3.98  |
| PN13      | PN10       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 13 | 0.21   | 0.21      | 90%  | 0.07    | 0.12    | 0.4   | 12   | 15     | 0.020   | 0.015 | 0.79 | 0.56     | 0.9 | 0.003             | 0.004             | 0.007   | 336.25 | 336.55 | 337.55 | 339.77 | 337.55 | 2.22  |
| PN14      | PN10       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 14 | 0.18   | 0.18      | 85%  | 0.08    | 0.13    | 0.4   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.48     | 0.9 | 0.005             | 0.003             | 0.008   | 336.25 | 336.97 | 337.97 | 340.87 | 337.97 | 2.90  |
| PN15      | PN9        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 15 | 0.14   | 0.14      | 85%  | 0.08    | 0.13    | 0.3   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.37     | 0.9 | 0.003             | 0.002             | 0.005   | 333.42 | 334.13 | 335.13 | 340.87 | 335.13 | 5.74  |
| PN16      | PN8        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 16 | 0.05   | 0.05      | 95%  | 0.07    | 0.11    | 0.1   | 12   | 34     | 0.020   | 0.015 | 0.79 | 0.13     | 1.1 | 0.000             | 0.000             | 0.001   | 332.75 | 333.42 | 334.42 | 337.54 | 334.42 | 3.12  |
| PN17      | PN8        | 10.00    | 110.00  | 0.46      | 10.46    | 2.10       | PN SHED 17 | 0.09   | 0.28      | 50%  | 0.12    | 0.20    | 0.6   | 12   | 61     | 0.021   | 0.015 | 0.79 | 0.71     | 1.1 | 0.020             | 0.009             | 0.029   | 332.75 | 334.04 | 335.04 | 340.71 | 335.04 | 5.67  |
| PN18      | PN17       | 10.57    | 0.00    | 0.00      | 10.57    | 2.10       | PN SHED 18 | 0.19   | 0.19      | 40%  | 0.13    | 0.22    | 0.4   | 12   | 110    | 0.020   | 0.015 | 0.79 | 0.48     | 0.9 | 0.016             | 0.003             | 0.019   | 334.04 | 336.24 | 337.24 | 340.18 | 337.24 | 2.94  |
| PN19      | PN8        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 19 | 0.14   | 0.14      | 85%  | 0.08    | 0.13    | 0.3   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.37     | 1.1 | 0.003             | 0.002             | 0.006   | 332.75 | 333.47 | 334.47 | 340.19 | 334.47 | 5.72  |
| PN20      | PN7        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 20 | 0.18   | 0.18      | 85%  | 0.08    | 0.13    | 0.4   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.48     | 1.1 | 0.005             | 0.004             | 0.009   | 334.51 | 335.23 | 336.23 | 340.19 | 336.23 | 3.96  |
| PN21      | PN7        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 21 | 0.10   | 0.10      | 35%  | 0.14    | 0.23    | 0.2   | 12   | 106    | 0.020   | 0.015 | 0.79 | 0.25     | 1.1 | 0.004             | 0.001             | 0.005   | 330.20 | 332.33 | 333.33 | 335.60 | 333.33 | 2.27  |
| PN22      | PN6        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 22 | 0.40   | 0.40      | 95%  | 0.07    | 0.11    | 0.8   | 12   | 79     | 0.020   | 0.015 | 0.79 | 1.07     | 1.1 | 0.058             | 0.019             | 0.078   | 328.58 | 330.14 | 331.14 | 335.62 | 331.28 | 4.34  |
| PN25      | PN6        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 25 | 0.20   | 0.20      | 85%  | 0.08    | 0.13    | 0.4   | 12   | 79     | 0.020   | 0.015 | 0.79 | 0.53     | 1.1 | 0.014             | 0.005             | 0.019   | 328.58 | 330.14 | 331.14 | 335.62 | 332.62 | 3.00  |
| PN28      | PN2        | 40.26    | 27.00   | 0.11      | 40.37    | 0.60       | PN SHED 28 | 0.61   | 18.18     | 11%  | 0.17    | 0.28    | 6.4   | 24   | 211    | 0.031   | 0.015 | 3.14 | 2.03     | 1.1 | 0.224             | 0.071             | 0.294   | 322.46 | 329.04 | 331.04 | 339.24 | 331.04 | 8.20  |
| PN26      | PN28       | 39.36    | 216.00  | 0.90      | 40.26    | 0.60       | JUNCTION   | 0.00   | 17.39     | 8%   | 0.17    | 0.29    | 5.9   | 24   | 27     | 0.020   | 0.015 | 3.14 | 1.87     | 0.9 | 0.024             | 0.049             | 0.073   | 331.62 | 332.16 | 334.16 | 338.37 | 334.16 | 4.21  |
| PN27      | PN28       | 10.30    | 0.00    | 0.00      | 10.30    | 2.10       | PN SHED 27 | 0.18   | 0.18      | 40%  | 0.13    | 0.22    | 0.4   | 12   | 17     | 0.039   | 0.015 | 0.79 | 0.45     | 0.5 | 0.002             | 0.002             | 0.004   | 332.16 | 332.83 | 333.83 | 337.99 | 333.83 | 4.16  |
| XN5       | PN26       | 39.00    | 87.00   | 0.36      | 39.36    | 0.62       | JUNCTION   | 0.00   | 17.39     | 8%   | 0.17    | 0.29    | 6.2   | 18   | 216    | 0.022   | 0.015 | 1.77 | 3.50     | 1.1 | 0.995             | 0.209             | 1.204   | 329.14 | 333.85 | 335.35 | 342.35 | 335.36 | 6.99  |
| XN7       | XN5        | 39.00    | 0.00    | 0.00      | 39.00    | 0.62       | XN SHED 7  | 16.89  | 16.89     | 5%   | 0.17    | 0.29    | 5.8   | 15   | 87     | 0.042   | 0.015 | 1.23 | 4.71     | 0.5 | 0.927             | 0.172             | 1.100   | 334.35 | 338.00 | 339.25 | 339.25 | 339.25 | 0.00  |
| PN29      | XN5        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PN SHED 29 | 0.50   | 0.50      | 100% | 0.06    | 0.10    | 1.1   | 12   | 267    | 0.015   | 0.015 | 0.79 | 1.34     | 0.2 | 0.309             | 0.006             | 0.315   | 334.35 | 338.30 | 339.30 | 346.11 | 339.30 | 6.81  |

Notes: 1) From Figure 5-3A Placer County Storm Water Management Manual 2) Energy Loss 3) Junction Loss 4) Initial HGL assumes 70% full pipe

5) Red shading indicates flow exceeds pipe system capacity; blue shading represents pipes upsized from existing condition



## SIERRA GATEWAY APARTMENTS PEAK FLOW & HYDRAULIC GRADE LINE CALCULATIONS (10-yr Summary POST DEVELOPMENT)

South System

| Upstream  | Downstream |          | Respons | e Time    |          | Unit Peak  | Shad Nama   | Shed   | Tributary | Imp. | Infilt. | Infilt. | Peak  | Pipe    | Length | Slope    | n     | Α     | v        | к   | H(e) <sup>2</sup> | H(K) <sup>3</sup> | H(L)    | D/S    | U/S    | Top of | Rim or | HGL⁴   | Free- |
|-----------|------------|----------|---------|-----------|----------|------------|-------------|--------|-----------|------|---------|---------|-------|---------|--------|----------|-------|-------|----------|-----|-------------------|-------------------|---------|--------|--------|--------|--------|--------|-------|
| Structure | Structure  | Shed     | Pip     | pe        | Tr (min) | Discharge  | Sheu Maine  | Area   | Area      | Area | Rate    | Factor  | FIOW  | Size    | (6)    | (6, 16,) |       |       |          |     | .,                |                   |         | invert | invert | Pipe   | Grate  | (1)    | board |
| - 1-      | ×0 0       | Tr (min) | L (ft)  | trp (min) | 10.40    | (cfs/acre) | VO OLIED O  | (acre) | (acre)    | (%)  | (in/hr) | 0.00    | (cts) | (in)    | (ft)   | (ft/ft)  | 0.045 | (st)  | (ft/sec) | 0.0 | 0.407             | 0.000             | (He+Hk) | (ft)   | (ft)   | (ft)   | (ft)   | (ft)   | (ft)  |
| n/a       | XS-0       | 48.40    | 0.00    | 0.00      | 48.40    | 0.56       | XS SHED 0   | 687.70 | 697.96    | 6%   | 0.17    | 0.29    | 200.8 | 72 (x2) | 136    | 0.037    | 0.015 | 56.55 | 3.55     | 0.2 | 0.407             | 0.039             | 0.446   | 300.00 | 305.00 | 311.00 | 315.22 | 308.90 | 6.32  |
| PS1       | XS-001     | 16.08    | 121.00  | 0.50      | 16.58    | 1.60       | PS SHED 1   | 0.51   | 10.26     | 83%  | 0.08    | 0.13    | 16.2  | 27      | 42     | 0.019    | 0.015 | 3.98  | 4.07     | 0.2 | 0.153             | 0.051             | 0.204   | 307.83 | 308.61 | 310.86 | 315.20 | 310.86 | 4.34  |
| PS2       | PS1        | 14.86    | 292.00  | 1.22      | 16.08    | 1.60       | PS SHED 2   | 0.64   | 9.75      | 83%  | 0.08    | 0.13    | 15.4  | 27      | 121    | 0.015    | 0.015 | 3.98  | 3.87     | 0.5 | 0.397             | 0.116             | 0.513   | 308.61 | 310.39 | 312.64 | 315.09 | 312.64 | 2.45  |
| PS3       | PS2        | 14.47    | 94.00   | 0.39      | 14.86    | 1.78       | PS SHED 3   | 0.82   | 9.11      | 83%  | 0.08    | 0.14    | 16.0  | 27      | 292    | 0.017    | 0.015 | 3.98  | 4.02     | 0.9 | 1.038             | 0.226             | 1.264   | 310.39 | 315.24 | 317.49 | 320.33 | 317.49 | 2.84  |
| PS34      | PS3        | 11.88    | 0.00    | 0.00      | 11.88    | 2.02       | PS SHED 34  | 0.34   | 0.34      | 30%  | 0.14    | 0.24    | 0.6   | 12      | 15     | 0.023    | 0.015 | 0.79  | 0.80     | 0.9 | 0.006             | 0.009             | 0.015   | 315.24 | 315.59 | 316.59 | 320.31 | 317.51 | 2.80  |
| XS2       | PS3        | 13.83    | 153.00  | 0.64      | 14.47    | 1.78       | PS SHED XS2 | 0.66   | 7.95      | 83%  | 0.08    | 0.14    | 14.0  | 24      | 94     | 0.011    | 0.015 | 3.14  | 4.45     | 0.9 | 0.477             | 0.276             | 0.754   | 315.24 | 316.29 | 318.29 | 323.07 | 318.29 | 4.78  |
| PS4       | XS2        | 14.75    | 44.00   | 0.18      | 14.93    | 1.78       | JUNCTION    | 0.00   | 7.20      | 81%  | 0.08    | 0.14    | 12.6  | 24      | 153    | 0.013    | 0.015 | 3.14  | 4.02     | 0.9 | 0.635             | 0.226             | 0.861   | 316.29 | 318.27 | 320.27 | 326.91 | 320.27 | 6.64  |
| PS29      | PS4        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 29  | 0.61   | 0.61      | 90%  | 0.07    | 0.12    | 1.3   | 12      | 25     | 0.148    | 0.015 | 0.79  | 1.62     | 0.9 | 0.043             | 0.037             | 0.079   | 318.27 | 321.96 | 322.96 | 325.76 | 322.96 | 2.80  |
| PS33      | XS2        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 33  | 0.09   | 0.09      | 60%  | 0.11    | 0.18    | 0.2   | 12      | 56     | 0.031    | 0.015 | 0.79  | 0.23     | 0.9 | 0.002             | 0.001             | 0.003   | 316.29 | 318.00 | 319.00 | 322.26 | 319.00 | 3.26  |
| XS10      | XS2        | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | XS SHED 10  | 0.12   | 0.12      | 75%  | 0.09    | 0.15    | 0.2   | 12      | 30     | 0.024    | 0.015 | 0.79  | 0.32     | 0.9 | 0.002             | 0.001             | 0.003   | 316.29 | 317.00 | 318.00 | 322.65 | 320.27 | 2.38  |
| PS6       | PS4        | 11.54    | 13.00   | 0.05      | 11.59    | 2.02       | WQMH        | 0.00   | 3.60      | 84%  | 0.08    | 0.13    | 7.2   | 24      | 44     | 0.006    | 0.015 | 3.14  | 2.29     | 0.9 | 0.059             | 0.073             | 0.133   | 319.30 | 319.57 | 321.57 | 327.77 | 321.57 | 6.20  |
| PS7       | PS6        | 11.00    | 129.00  | 0.54      | 11.54    | 2.02       | JUNCTION    | 0.00   | 3.60      | 84%  | 0.08    | 0.13    | 7.2   | 24      | 13     | 0.018    | 0.015 | 3.14  | 2.29     | 0.9 | 0.018             | 0.073             | 0.091   | 319.57 | 319.81 | 321.81 | 335.88 | 321.81 | 14.07 |
| PS19      | PS7        | 10.89    | 21.00   | 0.09      | 10.98    | 2.10       | PS SHED 19  | 0.25   | 1.51      | 87%  | 0.08    | 0.13    | 3.1   | 12      | 62     | 0.021    | 0.015 | 0.79  | 4.00     | 0.9 | 0.644             | 0.224             | 0.868   | 322.99 | 324.32 | 325.32 | 332.83 | 325.32 | 7.51  |
| PS20      | PS19       | 10.64    | 60.00   | 0.25      | 10.89    | 2.10       | JUNCTION    | 0.00   | 1.26      | 84%  | 0.08    | 0.13    | 2.6   | 12      | 21     | 0.026    | 0.015 | 0.79  | 3.33     | 0.9 | 0.151             | 0.155             | 0.307   | 324.22 | 324.77 | 325.77 | 333.49 | 325.77 | 7.72  |
| PS21      | PS20       | 10.48    | 39.00   | 0.16      | 10.64    | 2.10       | PS SHED 21  | 0.03   | 1.26      | 84%  | 0.08    | 0.13    | 2.6   | 12      | 60     | 0.014    | 0.015 | 0.79  | 3.33     | 0.9 | 0.432             | 0.155             | 0.587   | 324.87 | 325.69 | 326.69 | 333.27 | 326.69 | 6.58  |
| PS22      | PS21       | 10.25    | 56.00   | 0.23      | 10.48    | 2.10       | JUNCTION    | 0.00   | 1.23      | 84%  | 0.08    | 0.13    | 2.6   | 12      | 39     | 0.019    | 0.015 | 0.79  | 3.26     | 1.1 | 0.268             | 0.181             | 0.449   | 325.79 | 326.55 | 327.55 | 334.29 | 327.55 | 6.74  |
| PS23      | PS22       | 10.05    | 48.00   | 0.20      | 10.25    | 2.10       | PS SHED 23  | 0.19   | 0.59      | 84%  | 0.08    | 0.13    | 1.2   | 12      | 56     | 0.021    | 0.015 | 0.79  | 1.56     | 0.5 | 0.088             | 0.019             | 0.107   | 326.65 | 327.85 | 328.85 | 334.39 | 328.85 | 5.54  |
| PS24      | PS23       | 10.00    | 13.00   | 0.05      | 10.05    | 2.10       | PS SHED 24  | 0.19   | 0.40      | 84%  | 0.08    | 0.13    | 0.8   | 12      | 48     | 0.025    | 0.015 | 0.79  | 1.06     | 0.5 | 0.035             | 0.009             | 0.044   | 327.95 | 329.14 | 330.14 | 334.81 | 330.14 | 4.67  |
| PS25      | PS24       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 25  | 0.21   | 0.21      | 70%  | 0.10    | 0.16    | 0.4   | 12      | 13     | 0.008    | 0.015 | 0.79  | 0.55     | 0.5 | 0.003             | 0.002             | 0.005   | 329.24 | 329.35 | 330.35 | 332.85 | 330.35 | 2.50  |
| PS26      | PS22       | 10.00    | 80.00   | 0.33      | 10.33    | 2.10       | PS SHED 26  | 0.54   | 0.64      | 84%  | 0.08    | 0.13    | 1.3   | 12      | 80     | 0.011    | 0.015 | 0.79  | 1.69     | 0.9 | 0.149             | 0.040             | 0.189   | 326.65 | 327.51 | 328.51 | 332.48 | 328.51 | 3.97  |
| PS27      | PS26       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 27  | 0.10   | 0.10      | 50%  | 0.12    | 0.20    | 0.2   | 12      | 80     | 0.011    | 0.015 | 0.79  | 0.25     | 0.9 | 0.003             | 0.001             | 0.004   | 327.61 | 328.47 | 329.47 | 332.26 | 329.47 | 2.79  |
| PS8       | PS7        | 10.64    | 87.00   | 0.36      | 11.00    | 2.02       | PS SHED 8   | 0.26   | 2.09      | 83%  | 0.08    | 0.14    | 4.2   | 12      | 129    | 0.020    | 0.015 | 0.79  | 5.31     | 0.9 | 2.358             | 0.395             | 2.753   | 325.78 | 328.36 | 329.36 | 336.04 | 329.36 | 6.68  |
| PS9       | PS8        | 10.14    | 63.00   | 0.26      | 10.40    | 2.10       | PS SHED 9   | 0.20   | 1.01      | 77%  | 0.09    | 0.15    | 2.1   | 12      | 87     | 0.020    | 0.015 | 0.79  | 2.66     | 0.5 | 0.397             | 0.055             | 0.452   | 328.36 | 330.10 | 331.10 | 336.50 | 331.10 | 5.40  |
| PS10      | PS9        | 10.00    | 33.00   | 0.14      | 10.14    | 2.10       | JUNCTION    | 0.00   | 0.81      | 76%  | 0.09    | 0.15    | 1.7   | 12      | 63     | 0.020    | 0.015 | 0.79  | 2.13     | 0.9 | 0.185             | 0.063             | 0.248   | 330.10 | 331.36 | 332.36 | 337.65 | 332.36 | 5.29  |
| PS11      | PS10       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 11  | 0.42   | 0.42      | 100% | 0.06    | 0.10    | 0.9   | 12      | 33     | 0.020    | 0.015 | 0.79  | 1.12     | 0.5 | 0.027             | 0.010             | 0.037   | 331.36 | 332.03 | 333.03 | 337.03 | 333.03 | 4.00  |
| PS12      | PS10       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 12  | 0.39   | 0.39      | 50%  | 0.12    | 0.20    | 0.8   | 12      | 48     | 0.020    | 0.015 | 0.79  | 0.99     | 0.9 | 0.031             | 0.014             | 0.044   | 331.36 | 332.31 | 333.31 | 337.65 | 333.31 | 4.34  |
| PS13      | PS8        | 10.32    | 77.00   | 0.32      | 10.64    | 2.10       | PS SHED 13  | 0.05   | 0.82      | 91%  | 0.07    | 0.12    | 1.7   | 12      | 89     | 0.017    | 0.015 | 0.79  | 2.18     | 0.9 | 0.274             | 0.067             | 0.341   | 328.36 | 329.86 | 330.86 | 337.25 | 330.86 | 6.39  |
| PS14      | PS13       | 10.00    | 77.00   | 0.32      | 10.32    | 2.10       | PS SHED 14  | 0.14   | 0.47      | 97%  | 0.06    | 0.11    | 1.0   | 12      | 77     | 0.017    | 0.015 | 0.79  | 1.26     | 0.9 | 0.079             | 0.022             | 0.101   | 329.86 | 331.17 | 332.17 | 337.12 | 332.17 | 4.95  |
| PS14a     | PS14       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 14a | 0.09   | 0.09      | 60%  | 0.11    | 0.18    | 0.2   | 12      | 77     | 0.020    | 0.015 | 0.79  | 0.23     | 0.9 | 0.003             | 0.001             | 0.003   | 331.64 | 333.20 | 334.20 | 342.00 | 334.20 | 7.80  |
| PS15      | PS14       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 15  | 0.15   | 0.15      | 80%  | 0.08    | 0.14    | 0.3   | 12      | 43     | 0.020    | 0.015 | 0.79  | 0.40     | 0.9 | 0.004             | 0.002             | 0.007   | 331.64 | 332.49 | 333.49 | 337.50 | 333.49 | 4.01  |
| PS16      | PS14       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 16  | 0.18   | 0.18      | 80%  | 0.08    | 0.14    | 0.4   | 12      | 43     | 0.020    | 0.015 | 0.79  | 0.47     | 0.9 | 0.006             | 0.003             | 0.009   | 331.64 | 332.50 | 333.50 | 337.51 | 333.50 | 4.01  |
| PS17      | PS13       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 17  | 0.17   | 0.17      | 80%  | 0.08    | 0.14    | 0.4   | 12      | 43     | 0.020    | 0.015 | 0.79  | 0.45     | 0.9 | 0.006             | 0.003             | 0.008   | 331.64 | 332.49 | 333.49 | 337.50 | 333.49 | 4.01  |
| PS18      | PS13       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 18  | 0.13   | 0.13      | 80%  | 0.08    | 0.14    | 0.3   | 12      | 43     | 0.020    | 0.015 | 0.79  | 0.34     | 0.9 | 0.003             | 0.002             | 0.005   | 331.64 | 332.50 | 333.50 | 337.53 | 333.50 | 4.03  |
| PS30      | PS4        | 14.07    | 164.00  | 0.68      | 14.75    | 1.78       | JUNCTION    | 0.00   | 2.99      | 76%  | 0.09    | 0.15    | 5.2   | 24      | 248    | 0.013    | 0.015 | 3.14  | 1.66     | 0.5 | 0.176             | 0.021             | 0.197   | 318.27 | 321.46 | 323.46 | 329.41 | 323.46 | 5.95  |
| PS31      | PS30       | 10.00    | 0.00    | 0.00      | 10.00    | 2.10       | PS SHED 31  | 0.22   | 0.22      | 90%  | 0.07    | 0.12    | 0.5   | 12      | 66     | 0.040    | 0.015 | 0.79  | 0.58     | 0.9 | 0.015             | 0.005             | 0.019   | 322.08 | 324.70 | 325.70 | 330.45 | 325.70 | 4.75  |
| XS5       | PS30       | 12.55    | 365.00  | 1.52      | 14.07    | 1.78       | XS SHED 5   | 1.68   | 2.77      | 75%  | 0.09    | 0.15    | 4.8   | 21      | 164    | 0.045    | 0.015 | 2.41  | 2.01     | 0.9 | 0.203             | 0.056             | 0.259   | 322.16 | 329.50 | 331.25 | 334.39 | 331.25 | 3.14  |
| PS32      | XS5        | 11.75    | 0.00    | 0.00      | 11.75    | 2.02       | PS SHED 32  | 1.09   | 1.09      | 75%  | 0.09    | 0.15    | 2.2   | 12      | 365    | 0.015    | 0.015 | 0.79  | 2.75     | 0.9 | 1.788             | 0.106             | 1.894   | 329.50 | 335.00 | 336.00 | 339.63 | 336.00 | 3.63  |

Notes: 1) From Figure 5-3A Placer County Storm Water Management Manual 2) Energy Loss 3) Junction Loss 4) Initial HGL based on inlet HW/D for 10-yr Q of 200.8 cfs = 0.65 (FHWA HEC-5 Hydraulic Charts for Selection of Highway Culverts) 5) Red shading indicates flow exceeds pipe system capacity; blue shading represents pipes upsized from existing condition



## SIERRA GATEWAY APARTMENTS PEAK FLOW & HYDRAULIC GRADE LINE CALCULATIONS (100-yr Summary POST DEVELOPMENT)

North System

| Upstream  | Downstream |          | Respons | e Time    |          | Unit Peak  | Charl Name | Shed   | Tributary | Imp. | Infilt. | Infilt. | Peak  | Pipe | Length | Slope   | n     | А    | v        | к   | H(e) <sup>2</sup> | H(K) <sup>3</sup> | H(L)    | D/S    | U/S    | Top of | Rim or | HGL⁴   | Free- |
|-----------|------------|----------|---------|-----------|----------|------------|------------|--------|-----------|------|---------|---------|-------|------|--------|---------|-------|------|----------|-----|-------------------|-------------------|---------|--------|--------|--------|--------|--------|-------|
| Structure | Structure  | Shed     | Pip     | be        | Tr (min) | Discharge  | Shed Name  | Area   | Area      | Area | Rate    | Factor  | FIOW  | Size | -      |         |       |      |          |     | .,                | . ,               |         | Invert | Invert | Ріре   | Grate  |        | board |
|           |            | Tr (min) | L (ft)  | trp (min) | ,        | (cfs/acre) |            | (acre) | (acre)    | (%)  | (in/hr) |         | (cfs) | (in) | (ft)   | (ft/ft) |       | (sf) | (ft/sec) |     |                   |                   | (He+Hk) | (ft)   | (ft)   | (ft)   | (ft)   | (ft)   | (ft)  |
|           |            |          |         |           |          |            |            |        |           |      |         |         |       |      |        |         |       |      |          |     |                   |                   |         |        |        |        |        | 323.30 |       |
| XN-1      | XN-OUT     | 41.60    | 122.00  | 0.51      | 42.11    | 1.16       | XN SHED 1  | 0.18   | 21.14     | 21%  | 0.15    | 0.26    | 20.2  | 24   | 150    | 0.012   | 0.015 | 3.14 | 6.42     | 0.5 | 1.590             | 0.320             | 1.910   | 319.50 | 321.30 | 323.30 | 329.21 | 325.21 | 4.00  |
| PN1       | XN1        | 41.25    | 83.00   | 0.35      | 41.60    | 1.18       | JUNCTION   | 0.00   | 20.96     | 20%  | 0.16    | 0.26    | 20.4  | 24   | 122    | 0.010   | 0.015 | 3.14 | 6.48     | 0.5 | 1.317             | 0.326             | 1.643   | 321.30 | 322.46 | 324.46 | 330.04 | 326.85 | 3.19  |
| PN2       | PN1        | 40.37    | 211.00  | 0.88      | 41.25    | 1.18       | PN SHED 2  | 0.45   | 2.78      | 83%  | 0.08    | 0.13    | 3.2   | 24   | 83     | 0.007   | 0.015 | 3.14 | 1.02     | 0.5 | 0.022             | 0.008             | 0.031   | 322.46 | 323.05 | 325.05 | 330.47 | 325.24 | 5.23  |
| PN3       | PN2        | 11.96    | 40.00   | 0.17      | 12.13    | 3.52       | PN SHED 3  | 0.09   | 2.33      | 80%  | 0.08    | 0.14    | 8.1   | 18   | 10     | 0.311   | 0.015 | 1.77 | 4.60     | 0.9 | 0.080             | 0.296             | 0.376   | 323.05 | 326.16 | 327.66 | 332.16 | 327.66 | 4.50  |
| PN4       | PN3        | 11.90    | 14.00   | 0.06      | 11.96    | 3.66       | WQMH       | 0.00   | 2.24      | 83%  | 0.08    | 0.14    | 8.1   | 18   | 40     | 0.000   | 0.015 | 1.77 | 4.61     | 0.5 | 0.320             | 0.165             | 0.486   | 327.75 | 327.77 | 329.27 | 335.99 | 329.27 | 6.72  |
| PN5       | PN4        | 11.77    | 30.00   | 0.13      | 11.90    | 3.66       | PN SHED 5  | 0.18   | 2.24      | 83%  | 0.08    | 0.14    | 8.1   | 18   | 14     | 0.011   | 0.015 | 1.77 | 4.61     | 1.3 | 0.112             | 0.429             | 0.541   | 327.90 | 328.05 | 329.55 | 336.13 | 329.81 | 6.32  |
| PN6       | PN5        | 11.44    | 79.00   | 0.33      | 11.77    | 3.66       | JUNCTION   | 0.00   | 2.06      | 82%  | 0.08    | 0.14    | 7.5   | 18   | 30     | 0.018   | 0.015 | 1.77 | 4.24     | 0.2 | 0.203             | 0.056             | 0.259   | 328.05 | 328.58 | 330.08 | 336.32 | 330.08 | 6.24  |
| PN7       | PN6        | 11.09    | 83.00   | 0.35      | 11.44    | 3.66       | JUNCTION   | 0.00   | 1.46      | 77%  | 0.09    | 0.15    | 5.3   | 12   | 90     | 0.018   | 0.015 | 0.79 | 6.74     | 0.9 | 2.649             | 0.635             | 3.284   | 328.58 | 330.20 | 331.20 | 339.37 | 333.36 | 6.01  |
| PN8       | PN7        | 10.69    | 96.00   | 0.40      | 11.09    | 3.66       | JUNCTION   | 0.00   | 1.18      | 80%  | 0.08    | 0.14    | 4.3   | 12   | 83     | 0.017   | 0.015 | 0.79 | 5.46     | 1.1 | 1.600             | 0.508             | 2.108   | 330.20 | 331.60 | 332.60 | 339.50 | 335.47 | 4.03  |
| PN9       | PN8        | 10.36    | 78.00   | 0.33      | 10.69    | 3.80       | JUNCTION   | 0.00   | 0.71      | 79%  | 0.09    | 0.14    | 2.7   | 12   | 96     | 0.019   | 0.015 | 0.79 | 3.41     | 1.1 | 0.722             | 0.198             | 0.920   | 331.59 | 333.42 | 334.42 | 340.52 | 336.39 | 4.13  |
| PN10      | PN9        | 10.06    | 73.00   | 0.30      | 10.36    | 3.80       | JUNCTION   | 0.00   | 0.57      | 77%  | 0.09    | 0.15    | 2.1   | 12   | 78     | 0.018   | 0.015 | 0.79 | 2.73     | 1.1 | 0.377             | 0.128             | 0.505   | 333.42 | 334.81 | 335.81 | 340.33 | 336.90 | 3.43  |
| PN11      | PN10       | 10.00    | 14.00   | 0.06      | 10.06    | 3.80       | PN SHED 11 | 0.09   | 0.18      | 90%  | 0.07    | 0.12    | 0.7   | 12   | 73     | 0.018   | 0.015 | 0.79 | 0.87     | 0.9 | 0.036             | 0.011             | 0.046   | 334.81 | 336.14 | 337.14 | 341.78 | 337.14 | 4.64  |
| PN12      | PN11       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 12 | 0.09   | 0.09      | 100% | 0.06    | 0.10    | 0.3   | 12   | 14     | 0.018   | 0.015 | 0.79 | 0.44     | 0.5 | 0.002             | 0.001             | 0.003   | 336.14 | 336.39 | 337.39 | 341.37 | 337.39 | 3.98  |
| PN13      | PN10       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 13 | 0.21   | 0.21      | 90%  | 0.07    | 0.12    | 0.8   | 12   | 15     | 0.020   | 0.015 | 0.79 | 1.01     | 0.9 | 0.010             | 0.014             | 0.024   | 336.25 | 336.55 | 337.55 | 339.77 | 337.55 | 2.22  |
| PN14      | PN10       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 14 | 0.18   | 0.18      | 85%  | 0.08    | 0.13    | 0.7   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.87     | 0.9 | 0.017             | 0.010             | 0.028   | 336.25 | 336.97 | 337.97 | 340.87 | 337.97 | 2.90  |
| PN15      | PN9        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 15 | 0.14   | 0.14      | 85%  | 0.08    | 0.13    | 0.5   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.67     | 0.9 | 0.011             | 0.006             | 0.017   | 333.42 | 334.13 | 335.13 | 340.87 | 336.41 | 4.46  |
| PN16      | PN8        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 16 | 0.05   | 0.05      | 95%  | 0.07    | 0.11    | 0.2   | 12   | 34     | 0.020   | 0.015 | 0.79 | 0.24     | 1.1 | 0.001             | 0.001             | 0.002   | 332.75 | 333.42 | 334.42 | 337.54 | 335.47 | 2.07  |
| PN17      | PN8        | 10.00    | 110.00  | 0.46      | 10.46    | 3.80       | PN SHED 17 | 0.09   | 0.28      | 50%  | 0.12    | 0.20    | 1.0   | 12   | 61     | 0.021   | 0.015 | 0.79 | 1.32     | 1.1 | 0.069             | 0.030             | 0.098   | 332.75 | 334.04 | 335.04 | 340.71 | 335.57 | 5.14  |
| PN18      | PN17       | 10.57    | 0.00    | 0.00      | 10.57    | 3.80       | PN SHED 18 | 0.19   | 0.19      | 40%  | 0.13    | 0.22    | 0.7   | 12   | 110    | 0.020   | 0.015 | 0.79 | 0.89     | 0.9 | 0.056             | 0.011             | 0.067   | 334.04 | 336.24 | 337.24 | 340.18 | 337.24 | 2.94  |
| PN19      | PN8        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 19 | 0.14   | 0.14      | 85%  | 0.08    | 0.13    | 0.5   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.67     | 1.1 | 0.011             | 0.008             | 0.018   | 332.75 | 333.47 | 334.47 | 340.19 | 335.49 | 4.70  |
| PN20      | PN7        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 20 | 0.18   | 0.18      | 85%  | 0.08    | 0.13    | 0.7   | 12   | 36     | 0.020   | 0.015 | 0.79 | 0.87     | 1.1 | 0.017             | 0.013             | 0.030   | 334.51 | 335.23 | 336.23 | 340.19 | 336.23 | 3.96  |
| PN21      | PN7        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 21 | 0.10   | 0.10      | 35%  | 0.14    | 0.23    | 0.4   | 12   | 106    | 0.020   | 0.015 | 0.79 | 0.46     | 1.1 | 0.015             | 0.004             | 0.019   | 330.20 | 332.33 | 333.33 | 335.60 | 333.38 | 2.22  |
| PN22      | PN6        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 22 | 0.40   | 0.40      | 95%  | 0.07    | 0.11    | 1.5   | 12   | 79     | 0.020   | 0.015 | 0.79 | 1.93     | 1.1 | 0.191             | 0.064             | 0.255   | 328.58 | 330.14 | 331.14 | 335.62 | 331.14 | 4.48  |
| PN25      | PN6        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 25 | 0.20   | 0.20      | 85%  | 0.08    | 0.13    | 0.8   | 12   | 79     | 0.020   | 0.015 | 0.79 | 0.96     | 1.1 | 0.047             | 0.016             | 0.063   | 328.58 | 330.14 | 331.14 | 335.62 | 331.14 | 4.48  |
| PN28      | PN2        | 40.26    | 27.00   | 0.11      | 40.37    | 1.20       | PN SHED 28 | 0.61   | 18.18     | 11%  | 0.17    | 0.28    | 17.3  | 24   | 211    | 0.031   | 0.015 | 3.14 | 5.49     | 0.9 | 1.635             | 0.422             | 2.057   | 322.46 | 329.04 | 331.04 | 339.24 | 331.04 | 8.20  |
| PN26      | PN28       | 39.36    | 216.00  | 0.90      | 40.26    | 1.20       | JUNCTION   | 0.00   | 17.39     | 8%   | 0.17    | 0.29    | 16.3  | 24   | 27     | 0.028   | 0.015 | 3.14 | 5.18     | 0.9 | 0.186             | 0.375             | 0.560   | 328.39 | 329.14 | 331.14 | 339.24 | 331.60 | 7.64  |
| PN27      | PN28       | 10.30    | 0.00    | 0.00      | 10.30    | 3.80       | PN SHED 27 | 0.18   | 0.18      | 40%  | 0.13    | 0.22    | 0.7   | 12   | 17     | 0.039   | 0.015 | 0.79 | 0.84     | 0.5 | 0.008             | 0.005             | 0.013   | 332.16 | 332.83 | 333.83 | 337.99 | 333.83 | 4.16  |
| XN5       | PN26       | 39.00    | 87.00   | 0.36      | 39.36    | 1.23       | JUNCTION   | 0.00   | 17.39     | 8%   | 0.17    | 0.29    | 16.8  | 18   | 216    | 0.022   | 0.015 | 1.77 | 9.50     | 1.1 | 7.346             | 1.541             | 8.887   | 329.14 | 333.85 | 335.35 | 342.35 | 340.49 | 1.86  |
| XN7       | XN5        | 39.00    | 0.00    | 0.00      | 39.00    | 1.23       | XN SHED 7  | 16.89  | 16.89     | 5%   | 0.17    | 0.29    | 16.1  | 15   | 87     | 0.042   | 0.015 | 1.23 | 13.10    | 0.5 | 7.183             | 1.333             | 8.516   | 334.35 | 338.00 | 339.25 | 339.25 | 349.00 | -9.75 |
| PN29      | XN5        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PN SHED 29 | 0.50   | 0.50      | 100% | 0.06    | 0.10    | 1.9   | 12   | 267    | 0.015   | 0.015 | 0.79 | 2.42     | 0.2 | 1.012             | 0.018             | 1.030   | 334.35 | 338.30 | 339.30 | 346.11 | 341.52 | 4.59  |

Notes: 1) From Figure 5-3A Placer County Storm Water Management Manual 2) Energy Loss 3) Junction Loss 4) Initial HGL assumes 100% full pipe 5) Red shading indicates flow exceeds pipe system capacity; blue shading represents pipes upsized from existing condition



## SIERRA GATEWAY APARTMENTS PEAK FLOW & HYDRAULIC GRADE LINE CALCULATIONS (100-yr Summary POST DEVELOPMENT)

South System

| Upstream  | Downstream |          | Respons | e Time    |          | Unit Peak  | Charl Nama             | Shed   | Tributary | Imp.       | Infilt. | Infilt. | Peak  | Pipe    | Length | Slope   | n     | Α     | v        | к   | H(e) <sup>2</sup> | H(K) <sup>3</sup> | H(L)    | D/S    | U/S    | Top of | Rim or | HGL⁴   | Free- |
|-----------|------------|----------|---------|-----------|----------|------------|------------------------|--------|-----------|------------|---------|---------|-------|---------|--------|---------|-------|-------|----------|-----|-------------------|-------------------|---------|--------|--------|--------|--------|--------|-------|
| Structure | Structure  | Shed     | Pip     | be        | Tr (min) | Discharge  | Shed Name              | Area   | Area      | Area       | Rate    | Factor  | Flow  | Size    |        |         |       |       |          |     | (-)               | . ,               |         | Invert | Invert | Ріре   | Grate  |        | board |
|           | ×0 0       | Tr (min) | L (ft)  | trp (min) | ( )      | (cfs/acre) |                        | (acre) | (acre)    | (%)        | (in/hr) | 0.00    | (cfs) | (in)    | (ft)   | (ft/ft) | 0.045 | (sf)  | (ft/sec) |     | 0.007             | 0.070             | (He+Hk) | (ft)   | (ft)   | (ft)   | (ft)   | (ft)   | (ft)  |
| n/a       | XS-0       | 48.40    | 0.00    | 0.00      | 48.40    | 1.04       | XS SHED 0              | 687.70 | 697.96    | 6%         | 0.17    | 0.29    | 535.8 | 72 (x2) | 136    | 0.037   | 0.015 | 56.55 | 9.48     | 0.2 | 2.897             | 0.279             | 3.176   | 300.00 | 305.00 | 311.00 | 315.22 | 312.68 | 2.54  |
| PS1       | XS-001     | 16.08    | 121.00  | 0.50      | 16.58    | 2.94       | PS SHED 1              | 0.51   | 10.26     | 83%        | 0.08    | 0.13    | 29.9  | 27      | 42     | 0.019   | 0.015 | 3.98  | 7.53     | 0.2 | 0.523             | 0.176             | 0.699   | 307.83 | 308.61 | 310.86 | 315.22 | 313.38 | 1.84  |
| PS2       | PS1        | 14.86    | 292.00  | 1.22      | 16.08    | 2.94       | PS SHED 2              | 0.64   | 9.75      | 83%        | 0.08    | 0.13    | 28.4  | 27      | 121    | 0.015   | 0.015 | 3.98  | 7.15     | 0.5 | 1.359             | 0.397             | 1.756   | 308.61 | 310.39 | 312.64 | 315.09 | 315.13 | -0.04 |
| PS3       | PS2        | 14.47    | 94.00   | 0.39      | 14.86    | 3.24       | PS SHED 3              | 0.82   | 9.11      | 83%        | 0.08    | 0.14    | 29.3  | 27      | 292    | 0.017   | 0.015 | 3.98  | 7.37     | 0.9 | 3.480             | 0.759             | 4.239   | 310.39 | 315.24 | 317.49 | 320.33 | 317.62 | 2.71  |
| PS34      | PS3        | 11.88    | 0.00    | 0.00      | 11.88    | 3.66       | PS SHED 34             | 0.34   | 0.34      | 30%        | 0.14    | 0.24    | 1.2   | 12      | 15     | 0.023   | 0.015 | 0.79  | 1.51     | 0.9 | 0.022             | 0.032             | 0.054   | 315.24 | 315.59 | 316.59 | 320.31 | 317.67 | 2.64  |
| XS2       | PS3        | 13.83    | 153.00  | 0.64      | 14.47    | 3.24       | PS SHED XS2            | 0.66   | 7.95      | 83%        | 0.08    | 0.14    | 25.6  | 24      | 94     | 0.011   | 0.015 | 3.14  | 8.14     | 0.9 | 1.600             | 0.926             | 2.526   | 315.24 | 316.29 | 318.29 | 323.07 | 320.14 | 2.93  |
| PS4       | <u>XS2</u> | 14.75    | 44.00   | 0.18      | 14.93    | 3.24       | JUNCTION               | 0.00   | 7.20      | 81%        | 0.08    | 0.14    | 23.1  | 24      | 153    | 0.013   | 0.015 | 3.14  | 7.37     | 0.9 | 2.132             | 0.758             | 2.891   | 316.29 | 318.27 | 320.27 | 326.91 | 323.03 | 3.88  |
| PS29      | PS4        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 29             | 0.61   | 0.61      | 90%        | 0.07    | 0.12    | 2.3   | 12      | 25     | 0.148   | 0.015 | 0.79  | 2.94     | 0.9 | 0.140             | 0.121             | 0.261   | 318.27 | 321.96 | 322.96 | 325.76 | 323.30 | 2.46  |
| PS33      | XS2        | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 33             | 0.09   | 0.09      | 60%        | 0.11    | 0.18    | 0.3   | 12      | 56     | 0.031   | 0.015 | 0.79  | 0.43     | 0.9 | 0.007             | 0.003             | 0.009   | 316.29 | 318.00 | 319.00 | 322.26 | 320.15 | 2.11  |
| XS10      | <u>X52</u> | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | XS SHED 10             | 0.12   | 0.12      | 75%        | 0.09    | 0.15    | 0.5   | 12      | 30     | 0.024   | 0.015 | 0.79  | 0.57     | 0.9 | 0.006             | 0.005             | 0.011   | 316.29 | 317.00 | 318.00 | 322.65 | 320.16 | 2.49  |
| PS6       | PS4        | 11.54    | 9.00    | 0.04      | 11.58    | 3.66       | WQMH                   | 0.00   | 3.60      | 84%        | 0.08    | 0.13    | 13.1  | 24      | 44     | 0.006   | 0.015 | 3.14  | 4.17     | 0.9 | 0.197             | 0.243             | 0.440   | 319.30 | 319.57 | 321.57 | 327.77 | 321.57 | 6.20  |
| P57       | P50        | 11.00    | 129.00  | 0.54      | 11.54    | 3.66       |                        | 0.00   | 3.60      | 84%        | 0.08    | 0.13    | 13.1  | 24      | 9      | 0.027   | 0.015 | 3.14  | 4.17     | 0.9 | 0.040             | 0.243             | 0.283   | 319.57 | 319.81 | 321.81 | 335.88 | 321.85 | 74.03 |
| PS19      | PS/        | 10.89    | 21.00   | 0.09      | 10.98    | 3.80       | PS SHED 19             | 0.25   | 1.51      | 87%        | 0.08    | 0.13    | 5.7   | 12      | 62     | 0.021   | 0.015 | 0.79  | 1.21     | 0.9 | 2.123             | 0.739             | 2.863   | 322.99 | 324.32 | 325.32 | 332.83 | 325.32 | 7.51  |
| PS20      | PS19       | 10.64    | 60.00   | 0.25      | 10.89    | 3.80       | JUNCTION<br>DO OUED 01 | 0.00   | 1.26      | 84%        | 0.08    | 0.13    | 4.8   | 12      | 21     | 0.026   | 0.015 | 0.79  | 6.06     | 0.9 | 0.500             | 0.514             | 1.013   | 324.22 | 324.77 | 325.77 | 333.49 | 326.33 | 7.16  |
| PS21      | PS20       | 10.48    | 39.00   | 0.16      | 10.64    | 3.80       | PS SHED 21             | 0.03   | 1.26      | 84%        | 0.08    | 0.13    | 4.8   | 12      | 60     | 0.014   | 0.015 | 0.79  | 6.06     | 0.9 | 1.428             | 0.514             | 1.941   | 324.87 | 325.69 | 326.69 | 333.27 | 328.27 | 5.00  |
| PS22      | PS21       | 10.25    | 56.00   | 0.23      | 10.48    | 3.80       |                        | 0.00   | 1.23      | 84%        | 0.08    | 0.13    | 4.6   | 12      | 39     | 0.019   | 0.015 | 0.79  | 5.92     | 1.1 | 0.884             | 0.598             | 1.483   | 325.79 | 326.55 | 327.55 | 334.29 | 329.76 | 4.53  |
| PS23      | P522       | 10.05    | 48.00   | 0.20      | 10.25    | 3.80       | PS SHED 23             | 0.19   | 0.59      | 84%        | 0.08    | 0.13    | 2.2   | 12      | 50     | 0.021   | 0.015 | 0.79  | 2.84     | 0.5 | 0.292             | 0.063             | 0.355   | 320.05 | 327.85 | 328.85 | 334.39 | 330.11 | 4.28  |
| PS24      | P523       | 10.00    | 13.00   | 0.05      | 10.05    | 3.80       | PS SHED 24             | 0.19   | 0.40      | 84%        | 0.08    | 0.13    | 1.5   | 12      | 48     | 0.025   | 0.015 | 0.79  | 1.92     | 0.5 | 0.115             | 0.029             | 0.144   | 327.95 | 329.14 | 330.14 | 334.81 | 330.26 | 4.55  |
| PS25      | P524       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 25             | 0.21   | 0.21      | 70%        | 0.10    | 0.16    | 0.8   | 12      | 13     | 0.008   | 0.015 | 0.79  | 1.00     | 0.5 | 0.008             | 0.008             | 0.016   | 329.24 | 329.35 | 330.35 | 332.85 | 330.35 | 2.50  |
| P520      | P322       | 10.00    | 80.00   | 0.33      | 10.33    | 3.80       | PS SHED 26             | 0.54   | 0.64      | <u>64%</u> | 0.08    | 0.13    | 2.4   | 12      | 80     | 0.011   | 0.015 | 0.79  | 3.08     | 0.9 | 0.491             | 0.132             | 0.023   | 320.00 | 327.31 | 328.31 | 332.40 | 330.38 | 2.10  |
| P32/      | P320       | 10.00    | 0.00    | 0.00      | 11.00    | 3.60       | PS SHED 21             | 0.10   | 0.10      | 020/       | 0.12    | 0.20    | 0.4   | 12      | 120    | 0.011   | 0.015 | 0.79  | 0.47     | 0.9 | 7 922             | 1 200             | 0.015   | 327.01 | 328.47 | 329.47 | 332.20 | 330.39 | 1.87  |
| PS0       |            | 10.04    | 62.00   | 0.30      | 10.40    | 3.00       |                        | 0.20   | 2.09      | 77%        | 0.00    | 0.14    | 7.0   | 12      | 97     | 0.020   | 0.015 | 0.79  | 9.00     | 0.9 | 1 221             | 0.192             | 1 502   | 229.70 | 220.30 | 221 10 | 226 50 | 222.40 | 3.00  |
| PS10      | PS0        | 10.14    | 22.00   | 0.20      | 10.40    | 3.00       |                        | 0.20   | 0.91      | 76%        | 0.09    | 0.15    | 3.0   | 12      | 62     | 0.020   | 0.015 | 0.79  | 2.04     | 0.0 | 0.615             | 0.102             | 0.925   | 220.30 | 221 26 | 222.26 | 227.65 | 222.49 | 4.01  |
| PS11      | PS10       | 10.00    | 0.00    | 0.14      | 10.14    | 3.80       | DS SHED 11             | 0.00   | 0.01      | 10.0%      | 0.09    | 0.15    | 3.0   | 12      | 33     | 0.020   | 0.015 | 0.79  | 2.00     | 0.9 | 0.015             | 0.211             | 0.025   | 331 36 | 332.03 | 332.00 | 337.03 | 333 /3 | 3.60  |
| PS12      | PS10       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 12             | 0.42   | 0.39      | 50%        | 0.00    | 0.10    | 1.0   | 12      | 48     | 0.020   | 0.015 | 0.79  | 1.84     | 0.0 | 0.000             | 0.032             | 0.120   | 331.36 | 332.00 | 333 31 | 337.65 | 333.46 | 4 19  |
| PS13      | PS8        | 10.00    | 77.00   | 0.00      | 10.00    | 3.80       | PS SHED 13             | 0.05   | 0.33      | <u>91%</u> | 0.12    | 0.20    | 3.1   | 12      | 80     | 0.020   | 0.015 | 0.79  | 3.96     | 0.9 | 0.103             | 0.047             | 1 1 2 1 | 328.36 | 320.86 | 330.86 | 337.05 | 332 11 | 5 14  |
| PS14      | PS13       | 10.02    | 77.00   | 0.32      | 10.04    | 3.80       | PS SHED 14             | 0.00   | 0.02      | 97%        | 0.07    | 0.12    | 1.8   | 12      | 77     | 0.017   | 0.015 | 0.79  | 2.27     | 0.0 | 0.302             | 0.213             | 0.330   | 320.30 | 331 17 | 332.17 | 337.12 | 332.11 | 4.69  |
| PS14a     | PS14       | 10.00    | 0.00    | 0.02      | 10.02    | 3.80       | PS SHED 14a            | 0.14   | 0.9       | 60%        | 0.00    | 0.11    | 0.3   | 12      | 77     | 0.077   | 0.015 | 0.79  | 0.43     | 0.0 | 0.207             | 0.072             | 0.012   | 331.64 | 333.20 | 334.20 | 342.00 | 334.20 | 7.80  |
| PS15      | PS14       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 15             | 0.00   | 0.05      | 80%        | 0.08    | 0.10    | 0.0   | 12      | 43     | 0.020   | 0.015 | 0.79  | 0.43     | 0.0 | 0.003             | 0.003             | 0.012   | 331.64 | 332.49 | 333.49 | 337 50 | 333.49 | 4.01  |
| PS16      | PS14       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 16             | 0.10   | 0.18      | 80%        | 0.00    | 0.14    | 0.0   | 12      | 43     | 0.020   | 0.015 | 0.70  | 0.86     | 0.0 | 0.014             | 0.007             | 0.022   | 331.64 | 332 50 | 333.50 | 337.51 | 333 50 | 4.01  |
| PS17      | PS13       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 17             | 0.10   | 0.10      | 80%        | 0.00    | 0.14    | 0.7   | 12      | 43     | 0.020   | 0.015 | 0.79  | 0.82     | 0.0 | 0.021             | 0.010             | 0.028   | 331.64 | 332.00 | 333.49 | 337.50 | 333.49 | 4.01  |
| PS18      | PS13       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 18             | 0.13   | 0.13      | 80%        | 0.08    | 0.14    | 0.5   | 12      | 43     | 0.020   | 0.015 | 0.79  | 0.62     | 0.9 | 0.011             | 0.005             | 0.016   | 331.64 | 332 50 | 333.50 | 337 53 | 333.50 | 4 0.3 |
| PS30      | PS4        | 14 07    | 164.00  | 0.68      | 14 75    | 3 24       |                        | 0.00   | 2.99      | 76%        | 0.09    | 0.15    | 9.6   | 24      | 248    | 0.013   | 0.015 | 3 14  | 3.05     | 0.5 | 0.592             | 0.072             | 0.665   | 318 27 | 321 46 | 323.46 | 329.41 | 323 70 | 5.71  |
| PS31      | PS30       | 10.00    | 0.00    | 0.00      | 10.00    | 3.80       | PS SHED 31             | 0.22   | 0.22      | 90%        | 0.07    | 0.12    | 0.8   | 12      | 66     | 0.040   | 0.015 | 0.79  | 1.06     | 0.9 | 0.048             | 0.016             | 0.064   | 322.08 | 324.70 | 325.70 | 330.45 | 325.70 | 4.75  |
| XS5       | PS30       | 12.55    | 365.00  | 1.52      | 14.07    | 3.24       | XS SHED 5              | 1.68   | 2.77      | 75%        | 0.09    | 0.15    | 8.9   | 21      | 164    | 0.045   | 0.015 | 2.41  | 3.69     | 0.9 | 0.684             | 0.190             | 0.875   | 322.16 | 329.50 | 331.25 | 334.39 | 331.25 | 3.14  |
| PS32      | XS5        | 11.75    | 0.00    | 0.00      | 11.75    | 3.66       | PS SHED 32             | 1.09   | 1.09      | 75%        | 0.09    | 0.15    | 3.9   | 12      | 365    | 0.015   | 0.015 | 0.79  | 5.03     | 0.9 | 5.972             | 0.353             | 6.325   | 329.50 | 335.00 | 336.00 | 339.63 | 337.57 | 2.06  |
| 1 002     |            | 11.70    | 0.00    | 0.00      | 11.70    | 0.00       | 100112002              | 1.00   | 1.00      | 10/0       | 0.00    | 0.10    | 0.0   | 12      | 000    | 0.010   | 0.010 | 0.75  | 0.00     | 0.0 | 0.012             | 0.000             | 0.020   | 520.00 | 000.00 | 300.00 | 000.00 | 001.01 | 2.00  |

Notes: 1) From Figure 5-3A Placer County Storm Water Management Manual 2) Energy Loss

3) Junction Loss

4) Initial HGL based on inlet HW/D for 100-yr Q of 535.8 cfs = 1.28 (FHWA HEC-5 Hydraulic Charts for Selection of Highway Culverts)

5) Red shading indicates flow exceeds pipe system capacity; blue shading represents pipes upsized from existing condition



| Runorr Carcura                                   | LIONS Dased | on the Plac                    | er county sto | Jill Waler | Management Ma | IIuai   |
|--------------------------------------------------|-------------|--------------------------------|---------------|------------|---------------|---------|
| <b>Basic Information</b><br>Project:<br>Job No.: | Sierra      | <b>Gateway A</b><br>25-7185-01 | partments     |            |               |         |
| Watershed                                        | No.: 2      | KN SHED 1                      |               |            |               |         |
| Prepared B                                       | y: C        | Omni-Means                     | , Ltd.        |            |               |         |
| Date:                                            | C           | 08/09/15                       |               |            |               |         |
| Return Per                                       | iod(s), Y   | ears:                          | 10            | 25         | 100           |         |
| Area, Acre                                       | s:          |                                | 0.18          |            |               |         |
| Elevation,                                       | Feet:       |                                | 337           |            |               |         |
|                                                  |             |                                |               |            |               |         |
| Infiltration:                                    | 7           | - f _ m - + - 1                |               | 1000       |               |         |
| Impervious                                       | Area, 🗞     | or Total                       |               | 100%       |               |         |
| Infiltrati                                       | on Rale,    | Inches/Ho                      | ur            | 0.06       |               |         |
| Overland Flow.                                   |             |                                |               |            |               |         |
| Length Fe                                        | et.         | 108.16                         |               |            |               |         |
| Slope, ft/                                       | ft:         | 0.0294                         |               |            |               |         |
| N 22020, 220                                     | :           | 0.11                           |               |            |               |         |
|                                                  |             |                                |               | Tr, mir    | nutes:        | 4.5     |
|                                                  |             |                                |               |            |               |         |
| Channel Flow:                                    |             |                                |               |            |               |         |
| Channel                                          | Area        | Length                         | Slope         | n          | Sideslope     | Tr      |
| no.                                              | Ac.         | ft.                            | ft/ft         |            | ft/l          | minutes |
| Gutter 1                                         | 0.18        | 165                            | 0.0298        | 0.110      | 1             | 1.6     |
|                                                  |             |                                |               |            |               |         |
|                                                  |             |                                |               |            |               |         |
|                                                  |             |                                |               |            |               |         |
|                                                  |             |                                |               |            |               | <i></i> |
|                                                  |             |                                | Total Tr,     | minute     | 82            | 6.L     |
|                                                  |             |                                |               |            |               |         |
| Flow Calculations.                               |             |                                |               |            |               |         |
| riow carculations.                               |             |                                |               |            |               |         |
| q10, cfs/acre                                    | Figure      | 5-3A, Sto                      | rmwater Ma    | nagement   | : Manual      | 2.1     |
| q25, cfs/acre                                    | Figure      | 5-3B, Sto                      | rmwater Ma    | nagement   | : Manual      | 2.7     |
| q100, cfs/acre                                   | Figure      | 5-3C, Sto                      | rmwater Ma    | nagement   | : Manual      | 3.8     |
|                                                  |             |                                |               |            |               |         |
|                                                  |             | ,                              |               |            |               |         |
| F1, intiltration fac                             | tor, cis,   | /acre:                         |               |            |               | 0.10    |
| Q, cfs 10-YEAR                                   |             |                                |               |            |               | 0.4     |
| O, cfs 25-YEAR                                   |             |                                |               |            |               | 0.5     |
| -<br>0 afa 100 YEAD                              |             |                                |               |            |               | 0 7     |
| Y, CIS IVU-IBAR                                  |             |                                |               |            |               | V • /   |
| Q=q*A-(A*(1-Impervio                             | us Area)    | *Fi)                           |               |            |               |         |

#### Small Watershed Time of Concentration / Flow Worksheet Runoff calculations based on the Placer County Storm Water Management Manual

|                                                                                    | Project:                                                          | Sierra                                    | Gateway A                                                          | partments                                                           |                                                  |                                  |                                                              |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------------------------------------------|
|                                                                                    | Job No.:                                                          | NT -                                      | 25-7185-01                                                         | -                                                                   |                                                  |                                  |                                                              |
|                                                                                    | Watershed                                                         | NO.:                                      | XN SHED 2                                                          |                                                                     |                                                  |                                  |                                                              |
|                                                                                    | Data.                                                             | у:                                        |                                                                    | ς, μια.                                                             |                                                  |                                  |                                                              |
|                                                                                    | Dale:<br>Peturn Der                                               | iod(g)                                    | Voarg.                                                             | 10                                                                  | 25                                               | 100                              |                                                              |
|                                                                                    | Area Acre                                                         | g.                                        | icais.                                                             | 0 39                                                                | 23                                               | 100                              |                                                              |
|                                                                                    | Elevation,                                                        | Feet:                                     |                                                                    | 337                                                                 |                                                  |                                  |                                                              |
|                                                                                    |                                                                   |                                           |                                                                    |                                                                     |                                                  |                                  |                                                              |
| Infiltra                                                                           | tion:                                                             | 7 200 9                                   | of Total                                                           |                                                                     | 100%                                             |                                  |                                                              |
|                                                                                    | Impervious                                                        | on Pate                                   | Inches/Ho                                                          | ur                                                                  | 0.06                                             |                                  |                                                              |
|                                                                                    | IIIIIIUIALI                                                       | on Nace,                                  | THCHED/ NO                                                         | uL                                                                  | 0.00                                             |                                  |                                                              |
| Overland                                                                           | Flow:                                                             |                                           |                                                                    |                                                                     |                                                  |                                  |                                                              |
|                                                                                    | Length, Fe                                                        | et:                                       | 108.16                                                             |                                                                     |                                                  |                                  |                                                              |
|                                                                                    | Slope, ft/                                                        | ft:                                       | 0.0294                                                             |                                                                     |                                                  |                                  |                                                              |
|                                                                                    | Ν                                                                 | :                                         | 0.11                                                               |                                                                     | maa mad                                          |                                  |                                                              |
|                                                                                    |                                                                   |                                           |                                                                    |                                                                     | 1 <b>1</b> , III1                                | nuces:                           | 4.5                                                          |
| Channel 1                                                                          | Flow:                                                             |                                           |                                                                    |                                                                     |                                                  |                                  |                                                              |
|                                                                                    | Channel                                                           | Area                                      | Length                                                             | Slope                                                               | n                                                | Sideslope                        | Ψr                                                           |
|                                                                                    | 0110111101                                                        |                                           |                                                                    | DIOPC                                                               |                                                  | Dracbrope                        | I L                                                          |
|                                                                                    | no.                                                               | Ac.                                       | ft.                                                                | ft/ft                                                               |                                                  | ft/l                             | minutes                                                      |
| Gutter                                                                             | no.                                                               | Ac.                                       | ft.<br>262.59                                                      | ft/ft<br>0.0298                                                     | 0.110                                            | ft/l<br>1                        | minutes<br>2.1                                               |
| Gutter                                                                             | no.<br>1                                                          | Ac.<br>0.39                               | ft.<br>262.59                                                      | <u>ft/ft</u><br>0.0298                                              | 0.110                                            | ft/l<br>1                        | minutes<br>2.1                                               |
| Gutter                                                                             | no.<br>1                                                          | Ac.<br>0.39                               | ft.<br>262.59                                                      | <u>ft/ft</u><br>0.0298                                              | 0.110                                            | ft/l                             | minutes<br>2.1                                               |
| Gutter                                                                             | no.<br>1                                                          | Ac.<br>0.39                               | ft.<br>262.59                                                      | ft/ft<br>0.0298                                                     | 0.110                                            | ft/l                             | minutes<br>2.1                                               |
| Gutter                                                                             | no.<br>1                                                          | Ac.<br>0.39                               | ft.<br>262.59                                                      | ft/ft<br>0.0298                                                     | 0.110<br>minute                                  | s:                               | <u>minutes</u><br>2.1                                        |
| Gutter                                                                             | no.<br>1                                                          | Ac.<br>0.39                               | ft.<br>262.59                                                      | ft/ft<br>0.0298<br>Total Tr,                                        | 0.110<br>minute                                  | #                                | <u>minutes</u><br>2.1<br><b>6.6</b>                          |
| Gutter                                                                             | no.<br>1                                                          | Ac.<br>0.39                               | ft.<br>262.59                                                      | ft/ft<br>0.0298<br>Total Tr,                                        | 0.110<br>minute                                  | s                                | <u>minutes</u><br>2.1<br><b>6.6</b>                          |
| Gutter<br>Flow Calo                                                                | culations:                                                        | Ac.<br>0.39                               | ft.<br>262.59                                                      | ft/ft<br>0.0298<br>Total Tr.                                        | 0.110<br>minute                                  | <b>f</b> t/1<br>1<br><b>s</b> t  | <u>minutes</u><br>2.1<br><b>6.6</b>                          |
| Gutter<br>Flow Cald<br>q10, cfs,                                                   | culations:                                                        | Ac.<br>0.39<br>Figure                     | ft.<br>262.59<br>5-3A, Sto                                         | ft/ft<br>0.0298<br>Total Tr,                                        | 0.110<br>minute                                  | ft/l<br>1<br>s:                  | 2.1<br>2.1                                                   |
| Gutter<br>Flow Cald<br>q10, cfs,<br>q25, cfs,                                      | culations:<br>/acre                                               | Ac.<br>0.39<br>Figure<br>Figure           | ft.<br>262.59<br>5-3A, Sto<br>5-3B, Sto                            | Total Tr.<br>rmwater Man<br>rmwater Man                             | 0.110<br>minute<br>nagemen<br>nagemen            | t Manual<br>t Manual             | 2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.7                       |
| Gutter<br>Flow Calo<br>q10, cfs,<br>q25, cfs,<br>q100, cfs                         | culations:<br>/acre<br>/acre<br>s/acre                            | Ac.<br>0.39<br>Figure<br>Figure<br>Figure | ft.<br>262.59<br>5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor            | Total Tr.<br>Total Tr.<br>rmwater Man<br>rmwater Man<br>rmwater Man | nagemen<br>nagemen                               | t Manual<br>t Manual<br>t Manual | 2.1<br>2.1<br>6.6<br>2.1<br>2.7<br>3.8                       |
| Gutter<br>Flow Calo<br>q10, cfs,<br>q25, cfs,<br>q100, cfs                         | culations:<br>/acre<br>/acre<br>s/acre                            | Ac.<br>0.39<br>Figure<br>Figure<br>Figure | ft.<br>262.59<br>5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor            | Total Tr,<br>Total Tr,<br>rmwater Maj<br>rmwater Maj                | 0.110<br>minute<br>nagemen<br>nagemen            | t Manual<br>t Manual<br>t Manual | 2.1<br>6.6<br>2.1<br>2.1<br>2.1<br>2.7<br>3.8                |
| Gutter<br>Flow Cald<br>q10, cfs,<br>q25, cfs,<br>q100, cfs<br>Fi, infi             | no.<br>1<br>culations:<br>/acre<br>/acre<br>s/acre                | Ac.<br>0.39<br>Figure<br>Figure<br>Figure | ft.<br>262.59<br>5-3A, Sto<br>5-3B, Sto<br>5-3C, Sto<br>s/acre:    | Total Tr.<br>Total Tr.<br>rmwater Man<br>rmwater Man                | 0.110<br>minute<br>nagemen<br>nagemen            | t Manual<br>t Manual<br>t Manual | 2.1<br>2.1<br>2.1<br>2.1<br>2.7<br>3.8<br>0.10               |
| Gutter<br>Flow Calo<br>q10, cfs,<br>q25, cfs,<br>q100, cfs<br>Fi, infii<br>Q , cfs | culations:<br>/acre<br>/acre<br>s/acre<br>ltration fac            | Ac.<br>0.39<br>Figure<br>Figure<br>Figure | ft.<br>262.59<br>5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor<br>s/acre: | Total Tr.<br>Total Tr.                                              | 0.110<br>minute<br>nagemen<br>nagemen<br>nagemen | t Manual<br>t Manual<br>t Manual | 2.1<br>2.1<br>2.1<br>2.1<br>2.7<br>3.8<br>0.10<br><b>0.8</b> |
| Gutter<br>Flow Calo<br>q10, cfs,<br>q25, cfs,<br>q100, cfs<br>Fi, infi<br>Q , cfs  | culations:<br>/acre<br>/acre<br>s/acre<br>ltration fac<br>10-YEAR | Ac.<br>0.39<br>Figure<br>Figure<br>Figure | ft.<br>262.59<br>5-3A, Sto<br>5-3B, Sto<br>5-3C, Sto<br>s/acre:    | Total Tr.<br>Total Tr.                                              | 0.110<br>minute<br>nagemen<br>nagemen<br>nagemen | t Manual<br>t Manual<br>t Manual | 2.1<br>2.1<br>2.1<br>2.1<br>2.7<br>3.8<br>0.10<br>0.8<br>7 1 |

#### Small Watershed Time of Concentration / Flow Worksheet Runoff calculations based on the Placer County Storm Water Management Manual

H1783DRN001.xlsx

|                                       | liorr ourourus    |         |                    | or country see |                           | nanayemene ne |                   |
|---------------------------------------|-------------------|---------|--------------------|----------------|---------------------------|---------------|-------------------|
| Basic Info                            | rmation           |         |                    |                |                           |               |                   |
| F                                     | project:          | Sierra  | Gateway A          | partments      |                           |               |                   |
| J                                     | JOD NO.:          |         |                    |                |                           |               |                   |
| N<br>T                                | Watershed No.:    |         |                    | TEA            |                           |               |                   |
| F                                     | герагео ву        | :       | Omnii - Means      | , <i>L</i> Lα. |                           |               |                   |
| L                                     | Return Period(s), |         | 00/09/15<br>Vearg: | 10             | 25                        | 100           |                   |
| 2                                     |                   |         | icarb.             | 0 60           | 23                        |               |                   |
| Elevation. Feet:                      |                   |         |                    | 337            |                           |               |                   |
| _                                     |                   |         |                    |                |                           |               |                   |
| Infiltration:                         |                   |         |                    |                |                           |               |                   |
| I                                     | mpervious         | Area, % | of Total           |                | 100%                      |               |                   |
| Infiltration Rate,                    |                   |         | Inches/Ho          | ur             | 0.06                      |               |                   |
|                                       |                   |         |                    |                |                           |               |                   |
| Overland F                            | low:              |         |                    |                |                           |               |                   |
| I                                     | ength, Fee        | t:      | 54.93              |                |                           |               |                   |
| S                                     | Slope, ft/ft:     |         |                    | 0.0283         |                           |               |                   |
|                                       | N:                |         | 0.11               |                |                           |               |                   |
|                                       |                   |         |                    | Tr, minutes:   |                           | 3.0           |                   |
| Channel Eleve                         |                   |         |                    |                |                           |               |                   |
| Channer Fro                           | Channel           | Area    | Length             | Slope          | n                         | Sideslope     | Ψr                |
|                                       | no.               | Ac.     | ft.                | ft/ft          |                           | ft/1          | minutes           |
| Gutter                                | 1                 | 0.6     | 228.66             | 0.0147         | 0.110                     | 1             | 2.1               |
|                                       |                   |         |                    |                |                           |               |                   |
|                                       |                   |         |                    |                |                           |               |                   |
|                                       |                   |         |                    |                |                           |               |                   |
|                                       |                   |         |                    |                | 1-1-1-1-1-1-1-1-1-1-1-1-1 |               | ****              |
| Total Tr, minutes:                    |                   |         |                    |                |                           |               | 5.2               |
|                                       |                   |         |                    |                |                           |               |                   |
|                                       |                   |         |                    |                |                           |               |                   |
| Flow Calculations:                    |                   |         |                    |                |                           |               |                   |
| all ofe/a                             | are               | Figure  | 5-3A Stor          | rmwater Ma     | nagemen                   | t Manual      | 2 1               |
| $q_{10}, c_{13}/a$                    | are               | Figure  | 5-38 Stor          | rmwater Ma     | nagemen                   | t Manual      | 2.1               |
| q100. cfs/a                           | acre              | Figure  | 5-3C. Stor         | rmwater Ma     | nagemen <sup>.</sup>      | t Manual      | 3.8               |
| -1-00, 010/0                          |                   | 5 ~ - 0 |                    |                |                           |               | 5.5               |
|                                       |                   |         |                    |                |                           |               |                   |
| Fi, infiltration factor, cfs/acre:    |                   |         |                    |                |                           |               | 0.10              |
| 0 cfs 1                               | 10-YEAR           |         |                    |                |                           |               | 1.3               |
| · · · · · · · · · · · · · · · · · · · |                   |         |                    |                |                           |               | -•-<br>• <i>c</i> |
| Ų, CIS 2                              | 29 - Y EAK        |         |                    |                |                           |               | Τ.0               |
| Q, cfs 1                              | LOO-YEAR          |         |                    |                |                           |               | 2.3               |
| Q=q*A-(A*(1-Impervious Area)*Fi)      |                   |         |                    |                |                           |               |                   |

## Small Watershed Time of Concentration / Flow Worksheet

Runoff calculations based on the Placer County Storm Water Management Manual
| Kunorr carcurat                           | LIONS Dased | I OII CILE FIACE | er county see | JIM WALEI | Management Ma | iiuai      |
|-------------------------------------------|-------------|------------------|---------------|-----------|---------------|------------|
| Basic Information<br>Project:<br>Job No.: | Sierra      | <b>Gateway A</b> | partments     |           |               |            |
| Watershed 1                               | No.:        | XN SHED 6        |               |           |               |            |
| Prepared B<br>Date:                       | y:          | Omni-Means       | , Ltd.        |           |               |            |
| Return Per                                | iod(s),     | Years:           | 10            | 25        | 100           |            |
| Area, Acres                               | s:          |                  | 0.52          |           |               |            |
| Elevation,                                | Feet:       |                  | 337           |           |               |            |
|                                           |             |                  |               |           |               |            |
| Infiltration:                             |             |                  |               |           |               |            |
| Impervious                                | Area, 🗞     | of Total         |               | 100%      |               |            |
| Infiltratio                               | on Rate,    | Inches/Ho        | ur            | 0.06      |               |            |
| Overland Flow:                            |             |                  |               |           |               |            |
| Length, Fe                                | et:         | 63.37            |               |           |               |            |
| Slope, ft/                                | ft:         | 0.0300           |               |           |               |            |
| N                                         | :           | 0.11             |               |           |               |            |
|                                           |             |                  |               | Tr, mi    | nutes:        | 3.3        |
|                                           |             |                  |               |           |               |            |
| Channel Flow:                             | 7           | Tongth           |               |           | Gidealere     |            |
| chalinei                                  | Area        | ft               | ft/ft         | 11        | ft/1          | minutes    |
| Gutter 1                                  | 0.52        | 500              | 0.015         | 0.110     | 1             | 4.7        |
|                                           |             |                  |               |           |               |            |
|                                           |             |                  |               |           |               |            |
|                                           |             |                  |               |           |               |            |
|                                           |             |                  |               |           |               |            |
|                                           |             |                  | Total Tr,     | minute    | s :           | 8.0        |
|                                           |             |                  |               |           |               |            |
| Flow Calculations:                        |             |                  |               |           |               |            |
|                                           |             |                  |               |           |               | 0.1        |
| q10, cis/acre                             | Figure      | 5-3A, Stor       | mwater Mai    | nagemen   | t Manual      | 2.1        |
| $q_{25}$ , $c_{15}/acre$                  | Figure      | 5-3B, SLUI       | mwater Ma     | nagemen   | - Manual      | 2.7        |
| quot, cib/acic                            | riguic      | 5 50, 5001       | Inwatter Ha   | nagemen   | c Manuar      | 5.0        |
|                                           |             |                  |               |           |               |            |
| Fi, infiltration fac                      | tor, cfs    | /acre:           |               |           |               | 0.10       |
| O.cfs 10-YEAR                             |             |                  |               |           |               | 1.1        |
| 0 afa 25-YEAB                             |             |                  |               |           |               | <u>т</u> , |
| ¥, CLB 2J-1EAR                            |             |                  |               |           |               | T • 2      |
| Q, CIS 100-YEAR                           |             |                  |               |           |               | 2.0        |
| Q=q*A-(A*(1-Impervio                      | us Area)    | *Fi)             |               |           |               |            |

#### Small Watershed Time of Concentration / Flow Worksheet Runoff calculations based on the Placer County Storm Water Management Manual

| Kulloff Calculat     | .ions base |                                          | cer country bed                          | JIM WALCI | nunugemente nu | nuur    |
|----------------------|------------|------------------------------------------|------------------------------------------|-----------|----------------|---------|
| Basic Information    |            |                                          |                                          |           |                |         |
| Project:             | Sierra     | Gateway A                                | partments                                |           |                |         |
| Job No.:             |            | 25-7185-0                                | 1                                        |           |                |         |
| Watershed M          | lo.:       | XN SHED 7                                |                                          |           |                |         |
| Prepared By          | /:         | Omni-Mean                                | s, Ltd.                                  |           |                |         |
| Date:                |            | 08/09/15                                 |                                          |           |                |         |
| Return Per           | iod(s),    | Years:                                   | 10                                       | 25        | 100            |         |
| Area, Acres          | 5:         |                                          | 16.89                                    |           |                |         |
| Elevation,           | Feet:      |                                          | 337                                      |           |                |         |
|                      |            |                                          |                                          |           |                |         |
| Infiltration:        | 7          |                                          |                                          | Ε 9.      |                |         |
| Impervious           | Area, ∛    | or Total                                 |                                          | 5%        |                |         |
| IIIIIIIIIIIII        | JII Rate,  | Inches/Ho                                | Jur                                      | 0.10      |                |         |
| Overland Flow:       |            |                                          |                                          |           |                |         |
| Length Fee           | et:        | 199.78                                   |                                          |           |                |         |
| Slope, ft/1          | Et:        | 0.010                                    | D                                        |           |                |         |
| N:                   | :          | 0.40                                     |                                          |           |                |         |
|                      |            |                                          |                                          | Tr, mi    | nutes:         | 19.6    |
|                      |            |                                          |                                          |           |                |         |
| Channel Flow:        |            |                                          |                                          |           |                |         |
| Channel              | Area       | Length                                   | Slope                                    | n         | Sideslope      | Tr      |
| no.                  | Ac.        | ft.                                      | ft/ft                                    |           | ft/l           | minutes |
| 1                    | 16.9       | 1200                                     | 0.005                                    | 0.400     | 1              | 19.0    |
|                      |            |                                          |                                          |           |                |         |
|                      |            |                                          |                                          |           |                |         |
|                      |            |                                          |                                          |           |                |         |
|                      |            |                                          | matal ma                                 |           |                | 30 C    |
|                      |            |                                          | IOLAL II,                                | minure    | 81             | 30.0    |
|                      |            |                                          |                                          |           |                |         |
| Flow Calculations:   |            |                                          |                                          |           |                |         |
|                      |            |                                          |                                          |           |                |         |
| q10, cfs/acre        | Figure     | 5-3A, Sto                                | rmwater Ma                               | nagement  | t Manual       | 0.6     |
| q25, cfs/acre        | Figure     | 5-3B, Sto                                | rmwater Ma                               | nagement  | t Manual       | 0.9     |
| q100, cfs/acre       | Figure     | 5-3C, Sto                                | rmwater Ma                               | nagement  | t Manual       | 1.3     |
|                      |            |                                          |                                          |           |                |         |
| Ri infiltmation for  | + 0 2 2    |                                          |                                          |           |                | 0.20    |
| FI, IIIIICTATION IAC | LUI, CIE   | acre:                                    |                                          |           |                | 0.30    |
| Q , cfs 10-YEAR      |            |                                          |                                          |           |                | 6.0     |
| Q, cfs 25-YEAR       |            |                                          |                                          |           |                | 9.7     |
| O . cfs 100-YEAR     |            |                                          |                                          |           |                | 16.4    |
|                      |            | , 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | an a |           |                |         |
| Q=q*A-(A*(1-Impervio | us Area)   | *Fi)                                     |                                          |           |                |         |

| Basic Information     |           |            |                                          |          |           |          |
|-----------------------|-----------|------------|------------------------------------------|----------|-----------|----------|
| Project:              | Sierra    | Gateway A  | partments                                |          |           |          |
| Job No.:              | 2         | 25-7185-01 |                                          |          |           |          |
| Watershed N           | Io.: 2    | XN SHED 8  |                                          |          |           |          |
| Prepared By           | ·: (      | Omni-Means | s, Ltd.                                  |          |           |          |
| Date:                 | (         | 08/09/15   |                                          |          |           |          |
| Return Peri           | .od(s), Y | lears:     | 10                                       | 25       | 100       |          |
| Area, Acres           | :         |            | 3.47                                     | ,        |           |          |
| Elevation,            | Feet:     |            | 337                                      | ,        |           |          |
|                       |           |            |                                          |          |           |          |
| Infiltration:         |           |            |                                          |          |           |          |
| Impervious            | Area, 😵   | of Total   |                                          | 5%       |           |          |
| Infiltratio           | on Rate,  | Inches/Ho  | ur                                       | 0.18     |           |          |
|                       |           |            |                                          |          |           |          |
| Overland Flow:        |           |            |                                          |          |           |          |
| Length, Fee           | et:       | 130        |                                          |          |           |          |
| Slope, it/i           | t:        | 0.0410     | 1                                        |          |           |          |
| N :                   |           | 0.40       |                                          |          |           |          |
|                       |           |            |                                          | Tr, mi   | nutes:    | 9.9      |
| Channel Eleve         |           |            |                                          |          |           |          |
| Channel Flow:         | 7 200     | Ionath     | Clone                                    | ~        | Cidaglana | <b>T</b> |
| Channer               | Area      | f+         | 510pe                                    | 11       | f+/1      | minuted  |
| 1                     | 3 47      | 400        | 0.04                                     | 0 400    | 1         | A_3      |
| 1                     | 5.1/      | 400        | 0.04                                     | 0.400    | 1         | 1.5      |
|                       |           |            |                                          |          |           |          |
|                       |           |            |                                          |          |           |          |
|                       |           |            |                                          |          |           |          |
|                       |           |            | Totol Tr                                 | <b></b>  |           | 1/ 5     |
|                       |           |            | IOLAL II                                 | , minure | 51        | 17.2     |
|                       |           |            |                                          |          | -         |          |
| Flow Calculations:    |           |            |                                          |          |           |          |
| riow carculations:    |           |            |                                          |          |           |          |
| q10, cfs/acre         | Figure    | 5-3A, Sto  | rmwater M                                | anagemen | t Manual  | 1.8      |
| q25, cfs/acre         | Figure    | 5-3B, Sto  | rmwater M                                | anagemen | t Manual  | 2.2      |
| q100, cfs/acre        | Figure    | 5-3C, Sto  | rmwater M                                | anagemen | t Manual  | 3.2      |
|                       |           |            |                                          |          |           |          |
|                       |           |            |                                          |          |           |          |
| Fi, infiltration fact | tor, cfs  | /acre:     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |          |           | 0.30     |
| O, cfs 10-YEAR        |           |            |                                          |          |           | 5.2      |
| - ,                   |           |            |                                          |          |           | c =      |
| V, CIS 25-YEAR        |           |            |                                          |          |           | 0/       |
| Q, cfs 100-YEAR       |           |            |                                          |          |           | 10.2     |
| O=q*A-(A*(1-Impervio  | ıs Area)  | *Fi)       |                                          |          |           |          |

|          |               |             |                  | *            |                            | 5         |         |
|----------|---------------|-------------|------------------|--------------|----------------------------|-----------|---------|
| Basic In | formation     | 0.4 a.m.m.a |                  | 3            |                            |           |         |
|          | Project:      | Sierra      | Gateway          | Apartments   |                            |           |         |
|          | JOD NO.:      | NTe         | 25-7185-         | 01           |                            |           |         |
|          | Watersned .   | NO.:        | AS SHED          | U<br>Da Ital |                            |           |         |
|          | Prepared B    | y:          | Omni-Mea         | ns, Lta.     |                            |           |         |
|          | Date:         |             | 08/09/15         | 1.0          | 0.5                        | 100       |         |
|          | Return Per    | 10d(S),     | iears:           | 10           | 25                         | 100       |         |
|          | Area, Acre    | s:          |                  | 687.70       |                            |           |         |
|          | Elevation,    | Feet:       |                  | 350          |                            |           |         |
| Infiltra | tion:         |             |                  |              |                            |           |         |
|          | Impervious    | Area, 🖁     | of Tota          | 1            | 5%                         |           |         |
|          | Infiltrati    | on Rate,    | Inches/1         | Hour         | 0.18                       |           |         |
|          |               |             |                  |              |                            |           |         |
| Overland | Flow:         |             |                  |              |                            |           |         |
|          | Length, Fe    | et:         | 20               | 0            |                            |           |         |
|          | Slope, ft/    | ft:         | 0.05             | 00           |                            |           |         |
|          | N             | :           | 0.1              | 1            |                            |           |         |
|          |               |             |                  |              | Tr, mi                     | nutes:    | 5.6     |
| Channel  |               |             |                  |              |                            |           |         |
| Channel  | Channel       | Area        | Length           | Slope        | n                          | Sideslope | Ψr      |
|          | no            | AC          | ft               | ft/ft        | 11                         | ft/1      | minutes |
| Shallow  | 1             | 5           | 500              | 0.08         | 0 400                      | 3         | 4 3     |
| Channel  | 2             | 687         | 10600            | 0.03         | 0 400                      | 3         | 38 5    |
|          | _             |             |                  |              |                            | -         |         |
|          |               |             |                  |              |                            |           |         |
|          |               |             |                  |              | 0+0+0+0+0+0+0+0+0+0+0+0+0+ |           |         |
|          |               |             |                  | Total Tr     | , minute                   | \$:       | 48.4    |
|          |               |             |                  |              |                            | -         |         |
|          | aulationa.    |             |                  |              |                            |           |         |
| FIOW Cal | culations:    |             |                  |              |                            |           |         |
| q10, cfs | /acre         | Figure      | 5-3A, St         | ormwater Ma  | anagemen                   | t Manual  | 0.6     |
| q25, cfs | /acre         | Figure      | 5-3B, St         | ormwater Ma  | anagemen                   | t Manual  | 0.7     |
| q100, cf | s/acre        | Figure      | 5-3C, St         | ormwater Ma  | anagemen                   | t Manual  | 1.0     |
|          |               |             |                  |              |                            |           |         |
|          |               |             | ,                |              |                            |           |         |
| Fl, infi | itration fac  | tor, ci:    | s/acre:          |              |                            |           | 0.30    |
| Q , cfs  | 10-YEAR       |             |                  |              |                            |           | 187.8   |
| O, cfs   | 25-YEAR       |             |                  |              |                            |           | 270.3   |
| ~ ,      | 100 7875      |             |                  |              |                            |           | E17 0   |
| V, CIS   | LUU-YEAR      |             |                  |              |                            |           | ⊃т/•≯   |
|          | * (1 Tmportio | un Aroa     | \ <b>*</b> 🖓 ¦ ) |              |                            |           |         |

H1783DRN001.xlsx

| Runoff                                                  | calculat             | ions base  | d on the | Plac  | er County | y Sto    | rm Water | Management M | Ianual  |
|---------------------------------------------------------|----------------------|------------|----------|-------|-----------|----------|----------|--------------|---------|
| Basic Informa                                           | tion                 |            |          |       |           |          |          |              |         |
| Pro                                                     | ject:                | Sierra     | Gatewa   | ay Aj | partmen   | ts       |          |              |         |
| Job                                                     | No.:                 |            | 25-718   | 5-01  |           |          |          |              |         |
| Wate                                                    | ershed 1             | lo.:       | XS SHE   | D 1   |           |          |          |              |         |
| Prep                                                    | pared By             | 7:         | Omni-M   | leans | , Ltd.    |          |          |              |         |
| Date                                                    | e:                   |            | 08/09/   | 15    |           |          |          |              |         |
| Reti                                                    | ırn Peri             | lod(s),    | Years:   |       |           | 10       | 25       | 100          |         |
| Area                                                    | a, Acres             | 5:         |          |       | 1.        | .82      |          |              |         |
| Elev                                                    | vation,              | Feet:      |          |       | 3         | 337      |          |              |         |
| Infiltration:                                           |                      |            |          |       |           |          |          |              |         |
| Impe                                                    | ervious              | Area, %    | of To    | tal   |           |          | 20%      |              |         |
| Inf                                                     | iltratio             | on Rate,   | Inche    | s/Ho  | ur        |          | 0.15     |              |         |
| Ownerland Blass                                         |                      |            |          |       |           |          |          |              |         |
|                                                         | i<br>nth Fee         | <u>+</u> . |          | 110   |           |          |          |              |         |
| Slot                                                    | juii, ree<br>n≏ ft/f | =c.<br>=+• | 0        | 0600  |           |          |          |              |         |
| 5101                                                    | 90, 10, 1<br>N:      |            | 0        | .40   |           |          |          |              |         |
|                                                         |                      |            |          |       |           |          | Tr, mi   | nutes:       | 8.0     |
|                                                         |                      |            |          |       |           |          |          |              |         |
| Channel Flow:                                           |                      |            |          |       |           |          |          |              |         |
| Cl                                                      | nannel               | Area       | Leng     | th    | Slope     |          | n        | Sideslope    | Tr      |
|                                                         | no.                  | AC.        |          | •     | IT/IT     | <u>,</u> | 0 400    | It/l         | minutes |
|                                                         | T                    | 1.82       | 365      |       | 0.03      | 5        | 0.400    | 4            | 6.2     |
|                                                         |                      |            |          |       |           |          |          |              |         |
|                                                         |                      |            |          |       |           |          |          |              |         |
|                                                         |                      |            |          |       |           |          |          |              | -       |
|                                                         |                      |            |          |       | Total     | Tr,      | minute   | \$:          | 14.2    |
|                                                         |                      |            |          |       |           |          |          | -            |         |
| Flow Calculat                                           | ions                 |            |          |       |           |          |          |              |         |
| FIOW Calculat                                           | 10115.               |            |          |       |           |          |          |              |         |
| q10, cfs/acre                                           |                      | Figure     | 5-3A,    | Sto   | rmwater   | Mar      | nagemen  | t Manual     | 1.8     |
| q25, cfs/acre                                           |                      | Figure     | 5-3B,    | Sto   | rmwater   | Mar      | nagemen  | t Manual     | 2.2     |
| q100, cfs/acr                                           | е                    | Figure     | 5-3C,    | Sto   | rmwater   | Mar      | nagemen  | t Manual     | 3.2     |
|                                                         |                      |            |          |       |           |          |          |              |         |
| Fi, infiltrat                                           | ion fac              | tor, cfs   | s/acre:  |       |           |          |          |              | 0.25    |
| 0 afa 10                                                | νέλθ                 |            |          |       |           |          |          |              | 3 0     |
| <b>V</b> , CIP 10-                                      | IGAR                 |            |          |       |           |          |          |              | 4.3     |
| ų, cis 25-                                              | YEAR                 |            |          |       |           |          |          |              | 3.7     |
| Q , cfs 100                                             | -YEAR                |            |          |       |           |          |          |              | 5.5     |
| $\bigcirc -\alpha \star \lambda  (\lambda \star (1 T))$ | mpervio              | us Area    | )*Fi)    |       |           |          |          |              |         |

| Basic Information<br>Project: | Sierra   | Gateway     | Apartment                                | s          |           |                  |
|-------------------------------|----------|-------------|------------------------------------------|------------|-----------|------------------|
| Watershed N                   | Io ·     | XS SHED     | 2                                        |            |           |                  |
| Prepared By                   | 7:       | Omni-Mea    | ans. Ltd.                                |            |           |                  |
| Date:                         |          | 08/09/15    | 5                                        |            |           |                  |
| Return Peri                   | .od(s),  | Years:      |                                          | 10 25      | 100       |                  |
| Area, Acres                   | 3:       |             | 2.                                       | 64         |           |                  |
| Elevation,                    | Feet:    |             | 3                                        | 37         |           |                  |
|                               |          |             |                                          |            |           |                  |
| Infiltration:                 |          | ·           | -                                        |            |           |                  |
| Impervious                    | Area, 🗞  | of Tota     | a⊥<br>/                                  | 10%        |           |                  |
| Infiltratic                   | on Rate, | Inches/     | Hour                                     | 0.16       |           |                  |
| Overland Flow:                |          |             |                                          |            |           |                  |
| Length, Fee                   | et:      | 10          | 00                                       |            |           |                  |
| Slope, ft/f                   | t:       | 0.08        | 300                                      |            |           |                  |
| N:                            |          | 0.4         | 10                                       |            |           |                  |
|                               |          |             |                                          | Tr, mi     | nutes:    | 6.9              |
| ~                             |          |             |                                          |            |           |                  |
| Channel Flow:                 | 7        | Townshi     |                                          |            | Gideelene | m <sub>e</sub> a |
| channer                       | Area     | f+          | ft/ft                                    | 11         | f+/1      | minutes          |
| 1                             | 2.64     | 315         | 0.04                                     | 0.400      | 1         | 3.6              |
|                               |          |             |                                          |            |           |                  |
|                               |          |             |                                          |            |           |                  |
|                               |          |             |                                          |            |           |                  |
|                               |          |             |                                          |            |           |                  |
|                               |          |             | Total 1                                  | Fr, minute | <b></b>   | 10.6             |
|                               |          |             |                                          |            | _         |                  |
| Flow Colgulations.            |          |             |                                          |            |           |                  |
| Flow Calculations:            |          |             |                                          |            |           |                  |
| q10, cfs/acre                 | Figure   | 5-3A, S     | tormwater                                | Managemer  | it Manual | 2.1              |
| q25, cfs/acre                 | Figure   | 5-3B, S     | tormwater                                | Managemer  | nt Manual | 2.7              |
| q100, cfs/acre                | Figure   | 5-3C, S     | tormwater                                | Managemer  | it Manual | 3.8              |
|                               |          |             |                                          |            |           |                  |
|                               |          | . /         |                                          |            |           | 0.07             |
| F1, INILITATION FAC           | cor, ci: | s/acre:     |                                          |            |           | 0.27             |
| Q , cfs 10-YEAR               |          |             |                                          |            |           | 4.9              |
| Q, cfs 25-YEAR                |          |             |                                          |            |           | 6.5              |
| Q, cfs 100-YEAR               |          |             |                                          |            |           | 9.4              |
|                               |          | un en la la | *. *. *. *. *. *. *. *. *. *. *. *. *. * |            |           |                  |
| Q=q*A-(A*(l-Impervio          | us Area, | )*F1)       |                                          |            |           |                  |

| Basic Information<br>Project:<br>Job No.: | Sierra     | <b>Gateway A</b>                        | partments   |          |                                          |            |
|-------------------------------------------|------------|-----------------------------------------|-------------|----------|------------------------------------------|------------|
| Watershed N                               | No.:       | XS SHED 5                               | -           |          |                                          |            |
| Prepared By                               | y: (       | Omni-Means                              | s, Ltd.     |          |                                          |            |
| Date:                                     |            | 08/09/15                                |             |          |                                          |            |
| Return Per                                | iod(s), Y  | Years:                                  | 10          | 25       | 100                                      |            |
| Area, Acres                               | S:<br>Foot |                                         | 2.64        |          |                                          |            |
| Elevation,                                | reet:      |                                         | 337         |          |                                          |            |
| Infiltration:                             |            |                                         |             |          |                                          |            |
| Impervious                                | Area, 🗞    | of Total                                |             | 75%      |                                          |            |
| Infiltratio                               | on Rate,   | Inches/Ho                               | our         | 0.12     |                                          |            |
|                                           |            |                                         |             |          |                                          |            |
| Overland Flow:                            |            | 5.0                                     |             |          |                                          |            |
| Length, Fee                               | et:<br>F+• | 0 0200                                  |             |          |                                          |            |
| Siope, ic/i                               |            | 0.25                                    | ·           |          |                                          |            |
|                                           |            |                                         |             | Tr, min  | nutes:                                   | 5.2        |
|                                           |            |                                         |             |          |                                          |            |
| Channel Flow:                             |            |                                         | _           |          |                                          |            |
| Channel                                   | Area       | Length                                  | Slope       | n        | Sideslope                                | Tr         |
|                                           | AC.        | IC.                                     |             | 0 400    | IT/I                                     | 1 7        |
| ±                                         | 2.01       | 100                                     | 0.04        | 0.400    | -                                        | 1.7        |
|                                           |            |                                         |             |          |                                          |            |
|                                           |            |                                         |             |          |                                          |            |
|                                           |            |                                         |             |          | 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0 |            |
|                                           |            |                                         | Total Tr,   | minute   | s :                                      | 7.0        |
|                                           |            |                                         |             |          |                                          |            |
| Flow Calculations.                        |            |                                         |             |          |                                          |            |
| Flow calculations.                        |            |                                         |             |          |                                          |            |
| q10, cfs/acre                             | Figure     | 5-3A, Sto                               | rmwater Ma  | nagement | Manual                                   | 2.1        |
| q25, cfs/acre                             | Figure     | 5-3B, Sto                               | rmwater Mai | nagement | Manual                                   | 2.7        |
| q100, cis/acre                            | Figure     | 5-3C, Sto:                              | rmwater Mai | nagement | Manual                                   | 3.8        |
|                                           |            |                                         |             |          |                                          |            |
| Fi, infiltration fac                      | tor, cfs   | /acre:                                  |             |          |                                          | 0.20       |
| Ó afa 10-VEAR                             |            | Í Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó |             |          |                                          | 54         |
|                                           |            |                                         |             |          |                                          | J.7<br>H A |
| Ų, CIS ∠S-YEAR                            |            |                                         |             |          |                                          | 7.0        |
| Q, cfs 100-YEAR                           |            |                                         |             |          |                                          | 9.9        |
| Q=q*A-(A*(1-Impervio                      | us Area)   | *Fi)                                    |             |          |                                          |            |

|                      |              |            | 1          |          | 5         |         |
|----------------------|--------------|------------|------------|----------|-----------|---------|
| Basic Information    |              |            |            |          |           |         |
| Project:             | Sierra       | Gateway A  | partments  |          |           |         |
| Job No.:             |              | 25-7185-01 | L          |          |           |         |
| Watershed N          | Io.:         | XS SHED 6  |            |          |           |         |
| Prepared By          | /:           | Omni-Means | s, Ltd.    |          |           |         |
| Date:                | - / \        | 08/09/15   |            |          |           |         |
| Return Peri          | .od(s),      | Years:     | 10         | 25       | 100       |         |
| Area, Acres          | 5:           |            | 2.64       |          |           |         |
| Elevation,           | Feet:        |            | 337        |          |           |         |
|                      |              |            |            |          |           |         |
|                      | 7            |            |            | E E Q.   |           |         |
| Impervious           | Area, a      | or Total   |            | 55%      |           |         |
| IIIIIIIIIIIIII       | m Rate,      | Inches/ Ac | Jul        | 0.10     |           |         |
| Overland Flow:       |              |            |            |          |           |         |
| Length Fee           | <b>↓</b> + • | 100        |            |          |           |         |
| Slope, ft/f          | t:           | 0.0200     | )          |          |           |         |
| N:                   |              | 0.40       |            |          |           |         |
|                      |              |            |            | Tr, mi   | nutes:    | 10.5    |
|                      |              |            |            |          |           |         |
| Channel Flow:        |              |            |            |          |           |         |
| Channel              | Area         | Length     | Slope      | n        | Sideslope | Tr      |
| no.                  | Ac.          | ft.        | ft/ft      |          | ft/l      | minutes |
| 1                    | 2.64         | 400        | 0.04       | 0.400    | 1         | 4.6     |
|                      |              |            |            |          |           |         |
|                      |              |            |            |          |           |         |
|                      |              |            |            |          |           |         |
|                      |              |            |            |          |           |         |
|                      |              |            | Total Tr   | , minute | s:        | 15.1    |
|                      |              |            |            |          | -         |         |
|                      |              |            |            |          |           |         |
| Flow Calculations:   |              |            |            |          |           |         |
| g10, cfs/acre        | Figure       | 5-3A, Sto  | rmwater Ma | anagemen | t Manual  | 1.7     |
| q25, cfs/acre        | Figure       | 5-3B, Sto  | rmwater Ma | anagemen | t Manual  | 2.1     |
| q100, cfs/acre       | Figure       | 5-3C, Sto  | rmwater Ma | anagemen | t Manual  | 3.1     |
|                      | -            |            |            | •        |           |         |
|                      |              |            |            |          |           |         |
| Fi, infiltration fac | tor, cf:     | s/acre:    |            |          |           | 0.17    |
| O . cfs 10-YEAR      |              |            |            |          |           | 4.3     |
|                      |              |            |            |          |           | <br>E 5 |
| Y, CIS 20-ILAR       |              |            |            |          |           | 5.5     |
| Q, cfs 100-YEAR      |              |            |            |          |           | 8.0     |
| Q=q*A-(A*(1-Impervio | us Area      | )*Fi)      |            |          |           |         |

| Kunorr carcurat      | LIONS Dased | I OII CHE FIAC | er county sto | JIM WALEI | Management Ma | iiuai               |
|----------------------|-------------|----------------|---------------|-----------|---------------|---------------------|
| Basic Information    |             |                |               |           |               |                     |
| Project:             | Sierra      | Gateway Ar     | partments     |           |               |                     |
| Job No.:             |             | 25-7185-01     |               |           |               |                     |
| Watershed N          | No.:        | PN SHED 2      |               |           |               |                     |
| Prepared By          | v :         | Omni-Means     | . Ltd.        |           |               |                     |
| Date:                | 2 -         | 08/09/15       | , 2001        |           |               |                     |
| Return Per           | iod(s).     | Years:         | 10            | 25        | 100           |                     |
| Area Acres           |             | 1001201        | 0.53          |           |               |                     |
| Elevation.           | Feet:       |                | 337           |           |               |                     |
| 2101002011           | 2000.       |                |               |           |               |                     |
| Infiltration:        |             |                |               |           |               |                     |
| Impervious           | Area. %     | of Total       |               | 100%      |               |                     |
| Infiltratio          | on Rate.    | Inches/Ho      | ur            | 0.06      |               |                     |
| 11111010001          | on nace,    | 11101100/110   | ar            | 0.00      |               |                     |
| Overland Flow:       |             |                |               |           |               |                     |
| Length Fe            | ∍t•         | 131,93         |               |           |               |                     |
| Slope ft/            | ft.         | 0.0306         |               |           |               |                     |
| S10pc/ 10/1          |             | 0 11           |               |           |               |                     |
| 14                   | •           | 0.11           |               | Tr mi     | nutes·        | 5 0                 |
|                      |             |                |               | ,         | ind ob i      | 0.0                 |
| Channel Flow:        |             |                |               |           |               |                     |
| Channel              | Area        | Length         | Slope         | n         | Sideslope     | Τr                  |
| no.                  | Ac.         | ft.            | ft/ft         |           | ft/1          | minutes             |
| Gutter 1             | 0.53        | 208.56         | 0.0282        | 0.110     | 1             | 1.6                 |
|                      |             |                |               |           |               |                     |
|                      |             |                |               |           |               |                     |
|                      |             |                |               |           |               |                     |
|                      |             |                |               |           |               |                     |
|                      |             |                | Total Tr      | minute    | <b>6 1</b>    | 6 6                 |
|                      |             |                | IUCAL II,     | minnee    | P*            | <b>v</b> • •        |
|                      |             |                |               |           |               |                     |
| Flow Calculations.   |             |                |               |           |               |                     |
| Flow calculations.   |             |                |               |           |               |                     |
| q10, cfs/acre        | Figure      | 5-3A, Stor     | mwater Ma     | nagemen   | t Manual      | 2.1                 |
| q25, cfs/acre        | Figure      | 5-3B, Stor     | mwater Ma     | nagemen   | t Manual      | 2.7                 |
| q100, cfs/acre       | Figure      | 5-3C, Stor     | mwater Ma     | nagemen   | t Manual      | 3.8                 |
|                      | -           |                |               | -         |               |                     |
|                      |             |                |               |           |               |                     |
| Fi, infiltration fac | tor, cfs    | /acre:         |               |           |               | 0.10                |
| 0 afa 10 VP3P        |             |                |               |           |               | 1 1                 |
| Y, CID IU-IDAR       |             |                |               |           |               | <b>*</b> • <b>*</b> |
| Q, cfs 25-YEAR       |             |                |               |           |               | 1.4                 |
| Q , cfs 100-YEAR     |             |                |               |           |               | 2.0                 |
|                      |             |                |               |           |               |                     |
| Q=q*A-(A*(1-Impervio | us Area)    | *Fi)           |               |           |               |                     |

#### Small Watershed Time of Concentration / Flow Worksheet Runoff calculations based on the Placer County Storm Water Management Manual

| Basic Information         Project:       Siera Gateway Apartments<br>Job No.:       25-7185-01         Watershed No.:       PN SHED 13         Prepared By:       Omni-Means, Ltd.<br>Date:       08/09/15         Return Period(s), Years:       10       25       100         Area, Acres:       0.21       337         Infiltration:       Impervious Area, % of Total<br>Infiltration Rate, Inches/Hour       85%         Overland Flow:       Tr, minutes:       2.9         Channel Area Length Slope n Sideslope Tr<br>no. Ac. ft. ft/ft ft/1 minutes       71.59         Gutter       2       0.21       25.31         Fave       1       0.21       23.98         Channel Area Length Slope n Sideslope Tr<br>no. Ac. ft. ft/ft ft/1 minutes       0.3         Gutter       2       0.21       25.31         Flow Calculations:       3.7         g10, cfs/acre Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre Figure 5-3C, Stormwater Management Manual       2.7         q100, cfs/acre Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4         Q, cfs       100-YEAR       0.6         Q: cfs       100-YEAR       0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sma                                      | ll Watersh                | ed Time             | of Conce              | entration      | n / Flo     | ow Worksh                                | eet           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|---------------------|-----------------------|----------------|-------------|------------------------------------------|---------------|
| Basic Information Project: Siere Gateway Apartments Job No.: 25-7185-01 Watershed No.: PN SHED 13 Prepared By: Omni-Means, Ltd. Date: 08/09/15 Return Period(s), Years: 10 25 100 Area, Acres: 0.21 Elevation, Feet: 337 Infiltration: Impervious Area, % of Total 85% Infiltration Rate, Inches/Hour 0.08 Overland Flow: Length, Feet: 71.59 Slope, ft/ft: 0.0540 N: Tr, minutes: 2.9 Channel Area Length Slope n Sideslope Tr no. Ac. ft. ft/ft ft/1 minutes Pave 1 0.21 22.98 0.0207 0.110 1 0.3 Gutter 2 0.21 25.31 0.005 0.110 2 0.5  Flow Calculations: q10, cfs/acre Figure 5-3A, Stormwater Management Manual 2.7 q100, cfs/acre Figure 5-3B, Stormwater Management Manual 2.7 q100, cfs/acre Figure 5-3C, Stormwater Management Manual 3.8 Fi, infiltration factor, cfs/acre: 0.13 Q . cfs 100-YEAR OcatA (At (1-Impervious Area) *Fi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | Runoff calculat           | ions base           | d on the Place        | er County Sto  | orm Water   | Management M                             | anual         |
| Project:       Sierra Gateway Apartments         Job No.:       25-7185-01         Watershed No.:       PN SHED 13         Prepared By:       Omni-Means, Ltd.         Date:       08/09/15         Return Period(s), Years:       10       25         Blevation, Feet:       0.21         Elevation, Feet:       337         Infiltration:       Impervious Area, % of Total       85%         Infiltration Rate, Inches/Hour       0.08         Overland Flow:       Image: Channel Area       Length, Slope         Channel Plow:       Channel Area       Length Slope       nr         Channel Area       Length Slope       nr       sideslope       Tr         Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr. minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/care       Figure 5-3C, Stormwater Management Manual       3.8         F1, infiltration factor, cfs/acre:       0.13       0.4       0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Basic In                                 | formation                 |                     |                       |                |             |                                          |               |
| Watershed No.:       PN SHED 13         Prepared By:       Omni-Means, Ltd.         Date:       08/09/15         Return Period(s), Years:       10       25         Infiltration:       Impervious Area, % of Total       85%         Infiltration Rate, Inches/Hour       0.08         Overland Flow:       10       0.08         Channel Area       Length Slope       n         Channel Area       Length Slope       n         Solpe, ft/ft:       0.0540       0.08         Overland Flow:       Channel Area       Length Slope       n         Channel Area       Length Slope       n       Sideslope       Tr         Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr. minutes:       3.7         Total Tr. minutes: </th <th></th> <th>Project:</th> <th>Sierra</th> <th>Gateway Ag</th> <th>partments</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | Project:                  | Sierra              | Gateway Ag            | partments      |             |                                          |               |
| Prepared By:<br>$08/09/15$<br>Return Period(s), Years:<br>$10$ 25 100<br>Area, Acres:<br>Elevation, Feet:Infiltration:<br>Impervious Area, % of Total<br>Infiltration Rate, Inches/Hour25Overland Flow:<br>Length, Feet:<br>Slope, ft/ft:<br>N:71.59<br>$0.0540$ Channel Area<br>Impervious Area, % of ft.<br>ft/ft71.59<br>$0.0540$ Channel Area<br>Impervious Area, % of ft.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | Watershed 1               | No.:                | PN SHED 13            |                |             |                                          |               |
| Date:       08/09/15         Return Period(s), Years:       10       25       100         Area, Acres:       0.21       337         Infiltration:       Impervious Area, % of Total       85%         Infiltration Rate, Inches/Hour       0.08         Overland Flow:       Length, Feet:       71.59         Slope, ft/ft:       0.0540         N:       0.11         Tr, minutes:       2.9         Channel Flow:       Tr, minutes:       2.9         Channel Flow:       0.614       ft/ft       ft/l         Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3B, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         F1, infiltration factor, cfs/acre:       0.13       0.4         Q. cfs       10-YEAR       0.6       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | Prepared B                | <i>!</i> :          | Omni-Means            | , Ltd.         |             |                                          |               |
| Return Period(s), Years:       10       25       100         Area, Acres:       0.21       337         Infiltration:       Impervious Area, % of Total       85%         Infiltration Rate, Inches/Hour       0.08         Overland Flow:       Length, Feet:       71.59         Slope, ft/ft:       0.0540         N:       0.11         Tr, minutes:       2.9         Channel Flow:       Tr, minutes:       2.9         Channel Flow:       0.11         N:       0.11         N:       0.11         Pave       1       0.21       23.98       0.0207         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3C, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4         Q, cfs       10-YEAR       0.4       0.6         Q, cfs       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | Date:                     |                     | 08/09/15              |                |             |                                          |               |
| Area, Acres:<br>Elevation, Feet: 337<br>Infiltration:<br>Impervious Area, % of Total 85%<br>Infiltration Rate, Inches/Hour 0.08<br>Overland Flow:<br>Length, Feet: 71.59<br>Slope, ft/ft: 0.0540<br>N: 0.11<br>Tr, minutes: 2.9<br>Channel Flow:<br>Channel Area Length Slope n Sideslope Tr<br>no. Ac. ft. ft/ft ft/1 minutes<br>Pave 1 0.21 23.98 0.0207 0.110 1 0.3<br>Gutter 2 0.21 25.31 0.005 0.110 2 0.5<br>Total Tr, minutes: 3.7<br>Flow Calculations:<br>q10, cfs/acre Figure 5-3A, Stormwater Management Manual 2.1<br>q25, cfs/acre Figure 5-3B, Stormwater Management Manual 2.7<br>q100, cfs/acre Figure 5-3C, Stormwater Management Manual 3.8<br>Fi, infiltration factor, cfs/acre: 0.13<br>Q : cfs 10-YEAR 0.4<br>Q : cfs 100-YEAR 0.4<br>Q : cfs 100-YEAR 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | Return Per                | iod(s),             | Years:                | 10             | 25          | 100                                      |               |
| Infiltration:<br>Impervious Area, % of Total 85%<br>Infiltration Rate, Inches/Hour 0.08<br>Overland Flow:<br>Length, Feet: 71.59<br>Slope, ft/ft: 0.0540<br>N: 0.11<br>Tr, minutes: 2.9<br>Channel Flow:<br>Channel Area Length Slope n Sideslope Tr<br>no. Ac. ft. ft/ft ft/1 minutes<br>Pave 1 0.21 23.98 0.0207 0.110 1 0.3<br>Gutter 2 0.21 25.31 0.005 0.110 2 0.5<br>Total Tr, minutes: 3.7<br>Flow Calculations:<br>q10, cfs/acre Figure 5-3A, Stormwater Management Manual 2.1<br>q25, cfs/acre Figure 5-3B, Stormwater Management Manual 2.7<br>q100, cfs/acre Figure 5-3C, Stormwater Management Manual 3.8<br>Fi, infiltration factor, cfs/acre: 0.13<br>Q, cfs 10-YEAR 0.4<br>Q, cfs 100-YEAR 0.6<br>Q. cfs 100-YEAR 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | Area, Acres<br>Elevation, | Feet:               |                       | 337            |             |                                          |               |
| Impervious Area, % of Total<br>Infiltration Rate, Inches/Hour       85%<br>0.08         Overland Flow:<br>Length, Feet:<br>Slope, ft/ft:<br>N:       71.59<br>0.0540<br>0.11         Tr, minutes:       2.9         Channel Flow:<br>Channel Area<br>No.<br>Ac.       Length Slope<br>ft.       Tr, minutes:       2.9         Channel Area<br>No.<br>Ac.       Length Slope<br>ft.       n       Sideslope<br>ft.       Tr<br>ft./1       minutes         Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:         3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4       0.4         Q.       cfs       10-YEAR       0.4       0.6         Q.       cfs       100-YEAR       0.8       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Infiltra                                 | tion:                     |                     |                       |                |             |                                          |               |
| Overland Flow:         Image: Time Side Side Side Side Side Side Side Sid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | Impervious<br>Infiltratio | Area, %<br>on Rate, | of Total<br>Inches/Ho | ur             | 85%<br>0.08 |                                          |               |
| Length, Feet: 71.59<br>Slope, ft/ft: 0.0540<br>N: 0.11<br>Tr, minutes: 2.9<br>Channel Flow:<br>Channel Area Length Slope n Sideslope Tr<br>no. Ac. ft. ft/ft ft/1 minutes<br>Pave 1 0.21 23.98 0.0207 0.110 1 0.3<br>Gutter 2 0.21 25.31 0.005 0.110 2 0.5<br>Total Tr, minutes: 3.7<br>Flow Calculations:<br>q10, cfs/acre Figure 5-3A, Stormwater Management Manual 2.1<br>q25, cfs/acre Figure 5-3B, Stormwater Management Manual 2.7<br>q100, cfs/acre Figure 5-3C, Stormwater Management Manual 3.8<br>Fi, infiltration factor, cfs/acre: 0.13<br>Q , cfs 10-YEAR 0.4<br>Q , cfs 25-YEAR 0.6<br>Q , cfs 100-YEAR 0.8<br>Orgeta-(A*(1-Impervious Area)*Fi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overland                                 | Flow:                     |                     |                       |                |             |                                          |               |
| Slope, It/It:       0.0540         N:       0.11         Tr, minutes:       2.9         Channel Flow:       Image: Slope of the slope                                                 |                                          | Length, Fe                | et:                 | 71.59                 |                |             |                                          |               |
| Channel Flow:       Tr, minutes:       2.9         Channel Area Length Slope no. Ac. ft. ft/ft ft/l minutes       Tr minutes:       7         Pave 1       0.21       23.98       0.0207       0.110       1       0.3         Gutter 2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3B, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4         Q, cfs       10-YEAR       0.4         Q, cfs       100-YEAR       0.8         Q=, cfs       100-YEAR       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | Slope, It/:<br>N          | EC:                 | 0.0540                |                |             |                                          |               |
| Channel Flow:       Ac.       ft.       ft/ft       n       Sideslope       Tr         Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3B, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4         Q, cfs       10-YEAR       0.4         Q, cfs       10-YEAR       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | 1                         | •                   | 0.11                  |                | Tr, mi      | nutes:                                   | 2.9           |
| Channel Area Length Slope n Sideslope Tr         no.       Ac.       ft.       ft/ft       ft/l       minutes         Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr. minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3C, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4         Q , cfs       10-YEAR       0.4         Q , cfs       100-YEAR       0.8         Q=, cfs       100-YEAR       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                           |                     |                       |                |             |                                          |               |
| Channel Area       Length Slope       n       Sideslope       Tr         no.       Ac.       ft.       ft/ft       ft/l       minutes         Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:       3.7         Total Tr, minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3B, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4         Q, cfs       10-YEAR       0.4       0.6         Q, cfs       100-YEAR       0.8       0.8         Q= cfs       100-YEAR       0.8       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Channel 1                                | Flow:                     | _                   |                       | <b>a</b> ]     |             |                                          | _             |
| Pave       1       0.21       23.98       0.0207       0.110       1       0.3         Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3B, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13         Q, cfs       10-YEAR       0.4         Q, cfs       100-YEAR       0.6         Q, cfs       100-YEAR       0.8         0.2       0.2       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | Channel<br>no             | Area                | Length<br>ft          | Slope<br>ft/ft | n           | ft/1                                     | Tr<br>minutes |
| Gutter       2       0.21       25.31       0.005       0.110       2       0.5         Total Tr, minutes:       3.7         Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3B, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13       0.4         Q, cfs       10-YEAR       0.6         Q, cfs       100-YEAR       0.8         O=gth-(At(1-Impervious Area)*Fi))       0.110       0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pave                                     | 1                         | 0.21                | 23.98                 | 0.0207         | 0.110       | 1                                        | 0.3           |
| Total Tr. minutes:3.7Flow Calculations:q10, cfs/acreFigure 5-3A, Stormwater Management Manual2.1q25, cfs/acreFigure 5-3B, Stormwater Management Manual2.7q100, cfs/acreFigure 5-3C, Stormwater Management Manual3.8Fi, infiltration factor, cfs/acre:0.13Q , cfs10-YEAR0.4Q , cfs10-YEAR0.6Q , cfs100-YEAR0.8Ordth-(ht(1-Impervious Area)*Fi)0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gutter                                   | 2                         | 0.21                | 25.31                 | 0.005          | 0.110       | 2                                        | 0.5           |
| Total Tr. minutes:3.7Flow Calculations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                           |                     |                       |                |             |                                          |               |
| Total Tr, minutes:3.7Flow Calculations:910, cfs/acreFigure 5-3A, Stormwater Management Manual2.1925, cfs/acre9100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 |                                          |                           |                     |                       |                |             | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |               |
| Flow Calculations:         q10, cfs/acre       Figure 5-3A, Stormwater Management Manual       2.1         q25, cfs/acre       Figure 5-3B, Stormwater Management Manual       2.7         q100, cfs/acre       Figure 5-3C, Stormwater Management Manual       3.8         Fi, infiltration factor, cfs/acre:       0.13         Q, cfs       10-YEAR       0.4         Q, cfs       100-YEAR       0.6         Q, cfs       100-YEAR       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                           |                     |                       | Total Tr,      | minute      | 95:                                      | 3.7           |
| Flow Calculations:q10, cfs/acreFigure 5-3A, Stormwater Management Manual2.1q25, cfs/acreFigure 5-3B, Stormwater Management Manual2.7q100, cfs/acreFigure 5-3C, Stormwater Management Manual3.8Fi, infiltration factor, cfs/acre:0.13Q, cfs10-YEAR0.4Q, cfs25-YEAR0.6Q, cfs100-YEAR0.8Q=g*A-(A*(1-Impervious Area)*Ei)2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                           |                     |                       |                |             | -                                        |               |
| q10, cfs/acreFigure 5-3A, Stormwater Management Manual2.1q25, cfs/acreFigure 5-3B, Stormwater Management Manual2.7q100, cfs/acreFigure 5-3C, Stormwater Management Manual3.8Fi, infiltration factor, cfs/acre:0.13Q, cfs10-YEAR0.4Q, cfs25-YEAR0.6Q, cfs100-YEAR0.8O=g*A- (A*(1-Impervious Area)*Fi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow Cal                                 | culations:                |                     |                       |                |             |                                          |               |
| q25, cfs/acreFigure 5-3B, Stormwater Management Manual2.7q100, cfs/acreFigure 5-3C, Stormwater Management Manual3.8Fi, infiltration factor, cfs/acre:0.13Q, cfs10-YEAR0.4Q, cfs25-YEAR0.6Q, cfs100-YEAR0.8Q=g*A-(A*(1-Impervious Area)*Fi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | q10, cfs                                 | /acre                     | Figure              | 5-3A, Stor            | mwater Ma      | nagemen     | t Manual                                 | 2.1           |
| q100, cfs/acreFigure 5-3C, Stormwater Management Manual3.8Fi, infiltration factor, cfs/acre:0.13Q, cfs10-YEAR0.4Q, cfs25-YEAR0.6Q, cfs100-YEAR0.8Q=g*A-(A*(1-Impervious Area)*Ei)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | q25, cfs                                 | /acre                     | Figure              | 5-3B, Stor            | mwater Ma      | nagemen     | t Manual                                 | 2.7           |
| Fi, infiltration factor, cfs/acre:       0.13         Q, cfs       10-YEAR       0.4         Q, cfs       25-YEAR       0.6         Q, cfs       100-YEAR       0.8         Q=g*A-(A*(1-Impervious Area)*Ei)       0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | q100, cf                                 | s/acre                    | Figure              | 5-3C, Stor            | rmwater Ma     | nagemen     | t Manual                                 | 3.8           |
| Fi, infiltration factor, cfs/acre:       0.13         Q, cfs       10-YEAR       0.4         Q, cfs       25-YEAR       0.6         Q, cfs       100-YEAR       0.8         O=g*A- (A*(1-Impervious Area)*Ei)       0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                           |                     |                       |                |             |                                          |               |
| Q, cfs 10-YEAR 0.4<br>Q, cfs 25-YEAR 0.6<br>Q, cfs 100-YEAR 0.8<br>O=g*A-(A*(1-Impervious Area)*Ei)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fi, infi                                 | ltration fac              | tor, cfs            | s/acre:               |                |             |                                          | 0.13          |
| Q, cfs 25-YEAR 0.6<br>Q, cfs 100-YEAR 0.8<br>0=g*A-(A*(1-Impervious Area)*Ei)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q , cfs                                  | 10-YEAR                   |                     |                       |                |             |                                          | 0.4           |
| Q, cfs 100-YEAR 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q , cfs                                  | 25-YEAR                   |                     |                       |                |             |                                          | 0.6           |
| $\Omega = \alpha \star A - (A \star (1 - Tmpervious Area) \star Fi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q , cfs                                  | 100-YEAR                  |                     |                       |                |             |                                          | 0.8           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Omega = \alpha \star \Delta = (\Delta$ | *(1-Tmpervio              | us Area             | ) *Fi)                |                |             |                                          |               |

|                      |              |            | -           |          | 5                                                |         |
|----------------------|--------------|------------|-------------|----------|--------------------------------------------------|---------|
| Basic Information    |              |            |             |          |                                                  |         |
| Project ·            | Sierra       | Gateway A  | nartments   |          |                                                  |         |
| Job No :             | Diciiu       | 25-7185-01 | pur emerreb |          |                                                  |         |
| Watershed N          |              | DN CHED 19 |             |          |                                                  |         |
| Droparod Pr          |              | Omni Moone | Itd         |          |                                                  |         |
| Prepared By          | /:           |            | , μια.      |          |                                                  |         |
| Date:                | ( )          | 08/09/15   | 1.0         | 0.5      | 100                                              |         |
| Return Peri          | .oa(s),      | iears:     | 10          | 25       | 100                                              |         |
| Area, Acres          | 3:           |            | 0.19        |          |                                                  |         |
| Elevation,           | Feet:        |            | 337         |          |                                                  |         |
|                      |              |            |             |          |                                                  |         |
| Infiltration:        |              |            |             |          |                                                  |         |
| Impervious           | Area, 🖇      | of Total   |             | 40%      |                                                  |         |
| Infiltratio          | on Rate,     | Inches/Ho  | ur          | 0.13     |                                                  |         |
|                      |              |            |             |          |                                                  |         |
| Overland Flow:       |              |            |             |          |                                                  |         |
| Length, Fee          | et:          | 54.15      |             |          |                                                  |         |
| Slope, ft/f          | t:           | 0.0460     |             |          |                                                  |         |
| N:                   |              | 0.40       |             |          |                                                  |         |
|                      |              |            |             | Tr, mi   | nutes:                                           | 5.7     |
|                      |              |            |             |          |                                                  |         |
| Channel Flow:        |              |            |             |          |                                                  |         |
| Channel              | Area         | Length     | Slope       | n        | Sideslope                                        | Tr      |
| no.                  | Ac.          | ft.        | ft/ft       |          | ft/l                                             | minutes |
| Gutter 1             | 0.19         | 177.06     | 0.008       | 0.240    | 1                                                | 4.9     |
|                      |              |            |             |          |                                                  |         |
|                      |              |            |             |          |                                                  |         |
|                      |              |            |             |          |                                                  |         |
|                      |              |            |             |          |                                                  |         |
|                      |              |            | Total Tr    | minute   | <b>z</b> .                                       | 106     |
|                      |              |            | +           |          | <b>*</b> 14:000000000000000000000000000000000000 |         |
|                      |              |            |             |          | •                                                |         |
| Flow Calculations.   |              |            |             |          |                                                  |         |
| FIGW Calculations.   |              |            |             |          |                                                  |         |
| q10, cfs/acre        | Figure       | 5-3A, Sto: | rmwater Ma  | nagemen  | t Manual                                         | 2.1     |
| g25, cfs/acre        | Figure       | 5-3B, Sto: | rmwater Ma  | inagemen | t Manual                                         | 2.7     |
| g100, cfs/acre       | Figure       | 5-3C, Sto: | rmwater Ma  | inagemen | t Manual                                         | 3.8     |
| 1,,                  | <b>J</b> • • | <b>,</b>   |             |          |                                                  |         |
|                      |              |            |             |          |                                                  |         |
| Fi infiltration fac  | tor of       | s/acre•    |             |          |                                                  | 0 22    |
|                      | ~~_, ~_~     | ·, ····    |             |          |                                                  | v • ± ± |
| Q, cis 10-YEAR       |              |            |             |          |                                                  | 0.4     |
| Q , cfs 25-YEAR      |              |            |             |          |                                                  | 0.5     |
| 0 afa 100 YEAR       |              |            |             |          |                                                  | 0 7     |
| Y, CIS IVU-IBAR      |              |            |             |          |                                                  | U . /   |
| Q=q*A-(A*(1-Impervio | us Area)     | *Fi)       |             |          |                                                  |         |

| Runoff calculations based on the Placer County Storm Water Management Manual |              |          |          |              |           |                      |          |  |
|------------------------------------------------------------------------------|--------------|----------|----------|--------------|-----------|----------------------|----------|--|
| Basic In                                                                     | formation    |          |          |              |           |                      |          |  |
|                                                                              | Project:     | Sierra   | Gateway  | Apartments   |           |                      |          |  |
|                                                                              | Job No.:     |          | 25-7185- | 01           |           |                      |          |  |
|                                                                              | Watershed 1  | No.:     | PN SHED  | 21           |           |                      |          |  |
|                                                                              | Prepared B   | Y:       | Omni-Mea | ns, Ltd.     |           |                      |          |  |
|                                                                              | Date:        |          | 08/09/15 |              |           |                      |          |  |
|                                                                              | Return Per   | iod(s),  | Years:   | 10           | 25        | 100                  |          |  |
|                                                                              | Area, Acre   | 5:       |          | 0.10         |           |                      |          |  |
|                                                                              | Elevation,   | Feet:    |          | 337          |           |                      |          |  |
| Infiltra                                                                     | tion:        |          |          |              |           |                      |          |  |
|                                                                              | Impervious   | Area, %  | of Tota  | 1            | 30%       |                      |          |  |
|                                                                              | Infiltratio  | on Rate, | Inches/  | Hour         | 0.14      |                      |          |  |
| Overland                                                                     | Flow:        |          |          |              |           |                      |          |  |
| o , er rand                                                                  | Length. Fe   | et:      | 32.5     | 3            |           |                      |          |  |
|                                                                              | Slope, ft/:  | ft:      | 0.13     | 42           |           |                      |          |  |
|                                                                              | l , , , , N  | :        | 0.4      | 0            |           |                      |          |  |
|                                                                              |              |          |          |              | Tr, mi    | nutes:               | 3.0      |  |
| <b>a</b> ] ]                                                                 | -1           |          |          |              |           |                      |          |  |
| Channel                                                                      | FLOW:        | 7        | Teneth   | Glama        |           | Gideelene            | <b>—</b> |  |
|                                                                              | channer      | Area     | f+       | ft/ft        | 11        | f+/1                 | minutes  |  |
| Gutter                                                                       | 1            | 0.1      | 95.93    | 0.0325       | 0.400     | 1                    | 2.7      |  |
|                                                                              |              |          |          |              |           |                      |          |  |
|                                                                              |              |          |          |              |           |                      |          |  |
|                                                                              |              |          |          |              |           |                      |          |  |
|                                                                              |              |          |          |              |           |                      |          |  |
|                                                                              |              |          |          | Total Tr,    | minute    | s :                  | 5.7      |  |
|                                                                              |              |          |          |              |           |                      |          |  |
| Flow Cal                                                                     | culations:   |          |          |              |           |                      |          |  |
| alo afa                                                                      | lagra        | Figuro   | E 27 C+  | ormustor Ma  | nagomon   | + Manual             | 2 1      |  |
| q10, cls                                                                     | /acre        | Figure   | 5-3A, SU | cormwater Ma | nagement  | t Manual<br>t Manual | 2.1      |  |
| $q_{23}$ , CIS                                                               | g/acre       | Figure   | 5-3C St  | ormwater Ma  | nagement  | t Manual<br>t Manual | 2.7      |  |
| q100, c1                                                                     | 5/4010       | riguie   | 5 50, 50 |              | inagement | e manaar             | 5.0      |  |
|                                                                              |              |          |          |              |           |                      |          |  |
| Fi, infi                                                                     | ltration fac | tor, cfs | s/acre:  |              |           |                      | 0.24     |  |
| Q, cfs                                                                       | 10-YEAR      |          |          |              |           |                      | 0.2      |  |
| ∩ cfa                                                                        | 25-VEAR      |          |          |              |           |                      | ПЗ       |  |
| X , CTD                                                                      | 100          |          |          |              |           |                      | 0.0      |  |
| ų, cis                                                                       | 100-YEAR     |          |          |              |           |                      | U.4      |  |
| Q=q*A- (A                                                                    | *(1-Impervio | us Area) | )*Fi)    |              |           |                      |          |  |

|                                                                                                                                        |                                          |            | -                                       |                          | 5                                                                                                                                                                                                                                                                                                                                                     |         |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Basic Information                                                                                                                      |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Project:                                                                                                                               | Sierra                                   | Gatewav Ar | artments                                |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Job No.:                                                                                                                               | 2 2                                      | 25-7185-01 |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Watershed M                                                                                                                            | No.: I                                   | PN SHED 22 |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Prepared By                                                                                                                            | y: (                                     | Omni-Means | , Ltd.                                  |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Date:                                                                                                                                  | . (                                      | 08/09/15   |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Return Per:                                                                                                                            | iod(s), Y                                | Zears:     | 10                                      | 25                       | 100                                                                                                                                                                                                                                                                                                                                                   |         |
| Area, Acres                                                                                                                            | 5:                                       |            | 0.31                                    |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Elevation,                                                                                                                             | Feet:                                    |            | 337                                     |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Infiltration:                                                                                                                          |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Impervious                                                                                                                             | Area, 😵                                  | of Total   |                                         | 85%                      |                                                                                                                                                                                                                                                                                                                                                       |         |
| Infiltratio                                                                                                                            | on Rate,                                 | Inches/Ho  | ur                                      | 0.08                     |                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Overland Flow:                                                                                                                         | _                                        |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Length, Fee                                                                                                                            | et:                                      | 54.3       |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Slope, ft/1                                                                                                                            | Et:                                      | 0.0529     |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| N                                                                                                                                      | :                                        | 0.11       |                                         | - ·                      |                                                                                                                                                                                                                                                                                                                                                       | o =     |
|                                                                                                                                        |                                          |            |                                         | Tr, mi                   | nutes:                                                                                                                                                                                                                                                                                                                                                | 2.5     |
| Channel Flow.                                                                                                                          |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Channel Fiow.                                                                                                                          | Area                                     | Length     | Slope                                   | n                        | Sideslone                                                                                                                                                                                                                                                                                                                                             | Ψr      |
| no.                                                                                                                                    | Ac.                                      | ft.        | ft/ft                                   |                          | ft/1                                                                                                                                                                                                                                                                                                                                                  | minutes |
| Pave 1                                                                                                                                 | 0.31                                     | 87.25      | 0.0333                                  | 0.110                    | 1                                                                                                                                                                                                                                                                                                                                                     | 0.7     |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                        |                                          |            | Total Tr,                               | minute                   | s :                                                                                                                                                                                                                                                                                                                                                   | 3.2     |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Flow Calculations:                                                                                                                     |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| all cfs/acre                                                                                                                           | Figure                                   | 5-3A Stor  | mwater Ma                               | nagement                 | - Manual                                                                                                                                                                                                                                                                                                                                              | 2 1     |
| $q_{10}$ , $c_{15}/acre$                                                                                                               | Figure                                   | 5-3R, SLOI | mwater Ma                               | nagement                 | - Manual                                                                                                                                                                                                                                                                                                                                              | 2.1     |
| $q_{23}$ , $c_{13}$ , $a_{c_{12}}$                                                                                                     | Figure                                   | 5-3C Stor  | mwater Ma                               | nagement                 | - Manual                                                                                                                                                                                                                                                                                                                                              | 3.8     |
| qioo, cis/acie                                                                                                                         | Figure                                   | 5-50, 5001 | illiwater Ma                            | Inagement                | Manual                                                                                                                                                                                                                                                                                                                                                | 5.0     |
|                                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |
| Fi. infiltration fac                                                                                                                   | tor, cfs                                 | /acre:     |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       | 0.13    |
|                                                                                                                                        |                                          | ,          |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       | ă c     |
| V, CIS IU-YEAR                                                                                                                         |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       | 0.0     |
| Q, cfs 25-YEAR                                                                                                                         |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       | 0.8     |
| Q, cfs 100-YEAR                                                                                                                        |                                          |            |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       | 1.2     |
| र २०१ <b>० <del>वि</del>र स्टब्स् स्टल सम्प्रत्य सम्प्रत्य सम्प्रत्य स्टल्स् स्टल्स् स्टल्स् स्टल्स् स्टल्स् स्टल्स् स्टल्स्<br/>-</b> | a da |            | *************************************** | tetetetetetetetetetétété | 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |         |
| Q=q*A-(A*(1-Impervio                                                                                                                   | us Area)                                 | *Fi)       |                                         |                          |                                                                                                                                                                                                                                                                                                                                                       |         |

|                      |           |            | -          |         | 0         |               |
|----------------------|-----------|------------|------------|---------|-----------|---------------|
| Basic Information    |           |            |            |         |           |               |
| Project:             | Sierra    | Gateway A  | partments  |         |           |               |
| Job No.:             | :         | 25-7185-01 |            |         |           |               |
| Watershed M          | Jo.: J    | PN SHED 25 |            |         |           |               |
| Prepared By          | 7: (      | Omni-Means | , Ltd.     |         |           |               |
| Date:                |           | 08/09/15   |            |         |           |               |
| Return Peri          | lod(s), N | Years:     | 10         | 25      | 100       |               |
| Area, Acres          | 5:        |            | 0.21       |         |           |               |
| Elevation,           | Feet:     |            | 337        |         |           |               |
|                      |           |            |            |         |           |               |
| Infiltration:        |           |            |            |         |           |               |
| Impervious           | Area, %   | of Total   |            | 85%     |           |               |
| Infiltratio          | on Rate,  | Inches/Ho  | ur         | 0.08    |           |               |
|                      |           |            |            |         |           |               |
| Overland Flow:       |           |            |            |         |           |               |
| Length, Fee          | et:       | 33.69      |            |         |           |               |
| Slope, ft/f          | Et:       | 0.0150     |            |         |           |               |
| N :                  | :         | 0.11       |            |         |           |               |
|                      |           |            |            | Tr, mi  | nutes:    | 2.7           |
|                      |           |            |            |         |           |               |
| Channel Flow:        | 7         | Towath     |            |         | Gidaglama | Што           |
| Channer              | Area      | f+         | stope      | 11      | f+ /1     | II<br>minutog |
| Gutter 1             | 0.21      | 40.5       | 0 005      | 0 110   | 1         | 0 7           |
|                      | 0.21      | 40.5       | 0.005      | 0.110   | 1         | 0.7           |
|                      |           |            |            |         |           |               |
|                      |           |            |            |         |           |               |
|                      |           |            |            |         |           |               |
|                      |           |            |            | minute  |           | 3 5           |
|                      |           |            | IUCAL II,  | MITHUCG | ₽.        |               |
|                      |           |            |            |         | -         |               |
| Flow Calculations:   |           |            |            |         |           |               |
|                      |           |            |            |         | _         |               |
| q10, cfs/acre        | Figure    | 5-3A, Stor | rmwater Ma | nagemen | t Manual  | 2.1           |
| q25, cfs/acre        | Figure    | 5-3B, Stor | rmwater Ma | nagemen | t Manual  | 2.7           |
| q100, cfs/acre       | Figure    | 5-3C, Stor | rmwater Ma | nagemen | t Manual  | 3.8           |
|                      |           |            |            |         |           |               |
|                      |           | ,          |            |         |           |               |
| F1, INTILTRATION fac | tor, cis  | /acre:     |            |         |           | 0.13          |
| Q, cfs 10-YEAR       |           |            |            |         |           | 0.4           |
| O . cfs 25-YEAR      |           |            |            |         |           | 0.6           |
|                      |           |            |            |         |           | <u> </u>      |
| V, CIS 100-IEAR      |           |            |            |         |           | ∪.ŏ           |
| Q=q*A-(A*(1-Impervio | us Area)  | *Fi)       |            |         |           |               |

|                                                                                 | Project:                                                                        | Sierra                                 | Gateway A                                         | partments                                                      |                                                |                                                             |                                                       |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|
|                                                                                 | Job No.:                                                                        | NT -                                   | 25-7185-01                                        |                                                                |                                                |                                                             |                                                       |
|                                                                                 | Watersned D                                                                     | NO.:                                   | PN SHED 27                                        | Ttd                                                            |                                                |                                                             |                                                       |
|                                                                                 | Data:                                                                           | у:                                     |                                                   | , ша.                                                          |                                                |                                                             |                                                       |
|                                                                                 | Dale:<br>Peturn Der                                                             | iod(g)                                 | Voarg.                                            | 10                                                             | 25                                             | 100                                                         |                                                       |
|                                                                                 | Area Acre                                                                       | <br>g.                                 | icars.                                            | 0 61                                                           | 2.5                                            | 100                                                         |                                                       |
|                                                                                 | Elevation,                                                                      | Feet:                                  |                                                   | 337                                                            |                                                |                                                             |                                                       |
|                                                                                 |                                                                                 |                                        |                                                   |                                                                |                                                |                                                             |                                                       |
| Infiltra                                                                        | tion:                                                                           | _                                      |                                                   |                                                                |                                                |                                                             |                                                       |
|                                                                                 | Impervious                                                                      | Area, 8                                | of Total                                          |                                                                | 100%                                           |                                                             |                                                       |
|                                                                                 | Infiltrati                                                                      | on Rate,                               | Inches/Ho                                         | ur                                                             | 0.06                                           |                                                             |                                                       |
| Overland                                                                        | Flow:                                                                           |                                        |                                                   |                                                                |                                                |                                                             |                                                       |
|                                                                                 | Length, Fe                                                                      | et:                                    | 121.51                                            |                                                                |                                                |                                                             |                                                       |
|                                                                                 | Slope, ft/                                                                      | ft:                                    | 0.0232                                            |                                                                |                                                |                                                             |                                                       |
|                                                                                 | N                                                                               | :                                      | 0.11                                              |                                                                |                                                |                                                             |                                                       |
|                                                                                 |                                                                                 |                                        |                                                   |                                                                | Tr, mi                                         | nutes:                                                      | 5.2                                                   |
| <b>a</b> h                                                                      |                                                                                 |                                        |                                                   |                                                                |                                                |                                                             |                                                       |
| channel .                                                                       | Channel                                                                         | Area                                   | Length                                            | Slope                                                          | n                                              | Sideslope                                                   | Ψr                                                    |
|                                                                                 | no.                                                                             | Ac.                                    | ft.                                               | ft/ft                                                          |                                                | ft/l                                                        | minutes                                               |
| Gutter                                                                          | 1                                                                               | 0.61                                   | 443                                               | 0.0158                                                         | 0.110                                          | 1                                                           | 4.0                                                   |
|                                                                                 |                                                                                 |                                        |                                                   |                                                                |                                                |                                                             |                                                       |
|                                                                                 |                                                                                 |                                        |                                                   |                                                                |                                                |                                                             |                                                       |
|                                                                                 |                                                                                 |                                        |                                                   |                                                                |                                                |                                                             |                                                       |
|                                                                                 |                                                                                 |                                        |                                                   |                                                                |                                                |                                                             |                                                       |
|                                                                                 |                                                                                 |                                        |                                                   |                                                                |                                                |                                                             | 0.2                                                   |
|                                                                                 |                                                                                 |                                        |                                                   | Total Tr,                                                      | minute                                         | 91                                                          | 9.2                                                   |
|                                                                                 |                                                                                 |                                        |                                                   | Total Tr,                                                      | minute                                         | <b>9</b> :                                                  | 9.2                                                   |
| Flow Cal                                                                        | culations:                                                                      |                                        |                                                   | Total Tr,                                                      | minuts                                         | \$ <b>\$</b> \$                                             | 9.2                                                   |
| Flow Cal                                                                        | culations:                                                                      | Figure                                 | 5-34 Stor                                         | Total Tr,                                                      | minute                                         | <b>s:</b><br>-                                              | 9.2                                                   |
| Flow Cale                                                                       | culations:<br>/acre<br>/acre                                                    | Figure                                 | 5-3A, Stor<br>5-3B, Stor                          | Total Tr,<br>rmwater Mar                                       | minute                                         | <b>s:</b><br>-<br>t Manual<br>t Manual                      | <b>9.2</b><br>2.1<br>2.7                              |
| <b>Flow Cal</b><br>q10, cfs<br>q25, cfs<br>q100, cfs                            | <b>culations:</b><br>/acre<br>/acre<br>s/acre                                   | Figure<br>Figure<br>Figure             | 5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor            | <b>Total Tr</b> ,<br>rmwater Mar<br>rmwater Mar<br>rmwater Mar | <b>minute</b><br>nagemen<br>nagemen<br>nagemen | f <b>s:</b><br>t Manual<br>t Manual<br>t Manual<br>t Manual | <b>9.2</b><br>2.1<br>2.7<br>3.8                       |
| <b>Flow Cal</b><br>q10, cfs<br>q25, cfs<br>q100, cfs                            | <b>culations:</b><br>/acre<br>/acre<br>s/acre                                   | Figure<br>Figure<br>Figure             | 5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor            | <b>Total Tr</b> ,<br>rmwater Mar<br>rmwater Mar<br>rmwater Mar | nagemen<br>nagemen<br>nagemen                  | t Manual<br>t Manual<br>t Manual<br>t Manual                | <b>9.2</b><br>2.1<br>2.7<br>3.8                       |
| Flow Cal<br>q10, cfs<br>q25, cfs<br>q100, cfs                                   | <b>culations:</b><br>/acre<br>/acre<br>s/acre                                   | Figure<br>Figure<br>Figure             | 5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor            | <b>Total Tr</b> ,<br>rmwater Ma<br>rmwater Ma<br>rmwater Ma    | minute<br>nagemen<br>nagemen<br>nagemen        | f <b>s:</b><br>-<br>t Manual<br>t Manual<br>t Manual        | <b>9.2</b><br>2.1<br>2.7<br>3.8                       |
| Flow Cal<br>q10, cfs<br>q25, cfs<br>q100, cf;<br>Fi, infi                       | <b>culations:</b><br>/acre<br>/acre<br>s/acre<br>ltration fac                   | Figure<br>Figure<br>Figure             | 5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor<br>s/acre: | Total Tr,<br>rmwater Mai<br>rmwater Mai<br>rmwater Mai         | minute<br>nagemen<br>nagemen<br>nagemen        | <b>s:</b><br>-<br>t Manual<br>t Manual<br>t Manual          | <b>9.2</b><br>2.1<br>2.7<br>3.8<br>0.10               |
| Flow Calo<br>q10, cfs<br>q25, cfs<br>q100, cf<br>Fi, infi<br>Q , <b>cfs</b>     | <b>culations:</b><br>/acre<br>/acre<br>s/acre<br>ltration fac<br><b>10-YEAR</b> | Figure<br>Figure<br>Figure<br>:tor, cf | 5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor<br>s/acre: | Total Tr,<br>rmwater Mar<br>rmwater Mar<br>rmwater Mar         | minute<br>nagemen<br>nagemen<br>nagemen        | <b>s:</b><br>-<br>t Manual<br>t Manual<br>t Manual          | <b>9.2</b><br>2.1<br>2.7<br>3.8<br>0.10<br><b>1.3</b> |
| Flow Cale<br>q10, cfs<br>q25, cfs<br>q100, cf<br>Fi, infi<br>Q , cfs<br>0 , cfs | culations:<br>/acre<br>/acre<br>s/acre<br>ltration fac<br>10-YEAR<br>25-YEAR    | Figure<br>Figure<br>Figure<br>:tor, cf | 5-3A, Stor<br>5-3B, Stor<br>5-3C, Stor<br>s/acre: | Total Tr,<br>rmwater Mar<br>rmwater Mar<br>rmwater Mar         | minute<br>nagemen<br>nagemen<br>nagemen        | <b>is:</b><br>-<br>t Manual<br>t Manual<br>t Manual         | 9.2<br>2.1<br>2.7<br>3.8<br>0.10<br>1.3<br>1.6        |

#### Small Watershed Time of Concentration / Flow Worksheet Runoff calculations based on the Placer County Storm Water Management Manual

H1783DRN002.xlsx

|                             |                                       |                          | -            |          | 5         |         |
|-----------------------------|---------------------------------------|--------------------------|--------------|----------|-----------|---------|
| Basic Information           |                                       |                          |              |          |           |         |
| Project:                    | Sierra                                | Gateway Ar               | artments     |          |           |         |
| Tob No :                    | Diciiu                                | 25-7185-01               | pur emerres  |          |           |         |
| Watershed N                 |                                       | 23-7183-01<br>DN CUFD 28 |              |          |           |         |
| Droparod Pr                 |                                       | Omni Moond               | T+d          |          |           |         |
| Prepared By                 |                                       |                          | , шиа.       |          |           |         |
| Date:                       |                                       | 08/09/15                 | 1.0          |          | 100       |         |
| Return Peri                 | .oa(s),                               | iears:                   | 10           | 25       | 100       |         |
| Area, Acres                 | 5:                                    |                          | 0.18         |          |           |         |
| Elevation,                  | Feet:                                 |                          | 337          |          |           |         |
|                             |                                       |                          |              |          |           |         |
| Infiltration:               |                                       |                          |              |          |           |         |
| Impervious                  | Area, %                               | of Total                 |              | 40%      |           |         |
| Infiltratio                 | on Rate,                              | Inches/Ho                | ur           | 0.13     |           |         |
|                             |                                       |                          |              |          |           |         |
| Overland Flow:              |                                       |                          |              |          |           |         |
| Length, Fee                 | et:                                   | 21.91                    |              |          |           |         |
| Slope, ft/f                 | it:                                   | 0.0315                   |              |          |           |         |
| N:                          |                                       | 0.40                     |              |          |           |         |
|                             |                                       |                          |              | Tr, mi   | nutes:    | 3.7     |
|                             |                                       |                          |              |          |           |         |
| Channel Flow:               |                                       |                          |              |          |           |         |
| Channel                     | Area                                  | Length                   | Slope        | n        | Sideslope | Tr      |
| no.                         | Ac.                                   | ft.                      | ft/ft        |          | ft/l      | minutes |
| Gutter 1                    | 0.18                                  | 174.37                   | 0.01         | 0.400    | 1         | 6.6     |
|                             |                                       |                          |              |          |           |         |
|                             |                                       |                          |              |          |           |         |
|                             |                                       |                          |              |          |           |         |
|                             |                                       |                          |              |          |           |         |
|                             |                                       |                          |              |          |           |         |
|                             |                                       |                          | TOTAL TT     | , minute | s:        | 10.3    |
|                             |                                       |                          |              |          | •         |         |
|                             |                                       |                          |              |          |           |         |
| Flow Calculations:          |                                       |                          |              |          |           |         |
| all afg/agre                | Figure                                | 5-37 Stor                | mwater Ma    | anagemen | t Manual  | 2 1     |
| $q_{10}$ , $c_{13}/ac_{12}$ | Figure                                | E 2P Stor                | cmwater Ma   | anagemen | t Manual  | 2.1     |
| $q_{25}$ , $c_{15}/acre$    | Figure                                | 5-3B, $5U0$              | mwater Ma    | anagemen | t Manual  | 2.7     |
| qiuu, cis/acre              | Figure                                | 5-30, 500                | Lillwater Ma | anagemen | L Mallual | 3.0     |
|                             |                                       |                          |              |          |           |         |
|                             | -                                     | /                        |              |          |           | 0.00    |
| F1, INTILTRATION fac        | cor, cis                              | /acre:                   |              |          |           | 0.22    |
| Q , cfs 10-YEAR             |                                       |                          |              |          |           | 0.4     |
|                             |                                       |                          |              |          |           | 05      |
| ¥, CIB 23-16AR              |                                       |                          |              |          |           | 0.0     |
| Q , cfs 100-YEAR            |                                       |                          |              |          |           | 0.7     |
| 0 mth (ht/1 Tmp             | · · · · · · · · · · · · · · · · · · · | * 77 - 1                 |              |          |           |         |
| Q=q*A-(A*(1-Impervio        | ıs Area)                              | *F.T)                    |              |          |           |         |

| Runoff calculat       | ions based | on the Plac | er County Sto                            | orm Water | Management Ma                           | anual   |
|-----------------------|------------|-------------|------------------------------------------|-----------|-----------------------------------------|---------|
| Basic Information     |            |             |                                          |           |                                         |         |
| Project:              | Sierra     | Gateway A   | partments                                |           |                                         |         |
| Job No.:              | :          | 25-7185-01  | L                                        |           |                                         |         |
| Watershed N           | io.: 2     | XN SHED 6   |                                          |           |                                         |         |
| Prepared By           | ': (       | Omni-Means  | s, Ltd.                                  |           |                                         |         |
| Date:                 |            | 08/09/15    |                                          |           |                                         |         |
| Return Peri           | od(s), Y   | Years:      | 10                                       | 25        | 100                                     |         |
| Area, Acres           | :          |             | 16.89                                    |           |                                         |         |
| Elevation,            | Feet:      |             | 337                                      |           |                                         |         |
| Infiltration:         |            |             |                                          |           |                                         |         |
| Impervious            | Area, %    | of Total    |                                          | 5%        |                                         |         |
| Infiltratic           | on Rate,   | Inches/Ho   | our                                      | 0.18      |                                         |         |
| Owerland Flow         |            |             |                                          |           |                                         |         |
| Uverland Flow:        | +.         | 199 79      |                                          |           |                                         |         |
| Slope ft/f            | ···        | 0 0100      | 1                                        |           |                                         |         |
| Biope, ie/i           |            | 0.0100      | ,                                        |           |                                         |         |
| 14.                   |            | 0.10        |                                          | Tr, mi    | nutes:                                  | 19.6    |
|                       |            |             |                                          | •         |                                         |         |
| Channel Flow:         |            |             |                                          |           |                                         |         |
| Channel               | Area       | Length      | Slope                                    | n         | Sideslope                               | Tr      |
| no.                   | Ac.        | ft.         | ft/ft                                    |           | ft/l                                    | minutes |
| 1                     | 16.9       | 1200        | 0.005                                    | 0.400     | 1                                       | 19.0    |
|                       |            |             |                                          |           |                                         |         |
|                       |            |             |                                          |           |                                         |         |
|                       |            |             |                                          |           |                                         |         |
|                       |            |             | Total Tr,                                | minute    | s:                                      | 38.6    |
|                       |            |             | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |           | • • • • • • • • • • • • • • • • • • • • |         |
| Flow Colgulations.    |            |             |                                          |           |                                         |         |
| FIOW Calculations:    |            |             |                                          |           |                                         |         |
| q10, cfs/acre         | Figure     | 5-3A, Sto   | rmwater Ma                               | nagemen   | t Manual                                | 0.6     |
| q25, cfs/acre         | Figure     | 5-3B, Sto   | rmwater Ma                               | nagemen   | t Manual                                | 0.9     |
| q100, cfs/acre        | Figure     | 5-3C, Sto   | rmwater Ma                               | nagemen   | t Manual                                | 1.3     |
|                       |            |             |                                          |           |                                         |         |
| Fi. infiltration fact | or. cfs    | /acre:      |                                          |           |                                         | 0.30    |
|                       | ,          | ,           |                                          |           |                                         | , , ,   |
| Q, CIS IU-ILAR        |            |             |                                          |           |                                         | 6.U     |
| Q , cfs 25-YEAR       |            |             |                                          |           |                                         | 9.7     |
| Q, cfs 100-YEAR       |            |             |                                          |           |                                         | 16.4    |
| O=a*A-(A*(1-Imperviou | ıs Area)   | *Fi)        |                                          |           |                                         |         |

|                                          | nullorr ourouru |            |            | ion country b |          |            |              |
|------------------------------------------|-----------------|------------|------------|---------------|----------|------------|--------------|
| Basic Ind                                | Eormation       |            |            |               |          |            |              |
|                                          | Project:        | Sierra     | Gateway A  | partments     |          |            |              |
|                                          | Job No.:        | N.O.       | 25-7185-01 | L             |          |            |              |
|                                          | Droparod P      | NO.:       | Omni Moon  | , T+d         |          |            |              |
|                                          | Date:           | Y:         |            | з, цца.       |          |            |              |
|                                          | Return Per      | iod(s)     | Years.     | 10            | ) 25     | 100        |              |
|                                          | Area, Acres     | 5:         | 10410.     | 0.76          |          | 200        |              |
|                                          | Elevation,      | Feet:      |            | 325           | 5        |            |              |
|                                          |                 |            |            |               |          |            |              |
| Infiltrat                                | tion:           |            |            |               |          |            |              |
|                                          | Impervious      | Area, 🖁    | of Total   |               | 100%     |            |              |
|                                          | Infiltratio     | on Rate,   | Inches/Ho  | our           | 0.06     |            |              |
| <b>- -</b> -                             |                 |            |            |               |          |            |              |
| Overland                                 | Flow:           |            |            |               |          |            |              |
|                                          | Length, Fe      | et:<br>f+. | 85         |               |          |            |              |
|                                          | stope, it/.     | LL:        | 0.0200     | ,             |          |            |              |
|                                          | IN              | •          | 0.11       |               | Tr mi    | nutes·     | 4 4          |
|                                          |                 |            |            |               | 11, 111  | naceb.     | 1.1          |
| Channel H                                | Flow:           |            |            |               |          |            |              |
|                                          | Channel         | Area       | Length     | Slope         | n        | Sideslope  | Tr           |
|                                          | no.             | Ac.        | ft.        | ft/ft         |          | ft/l       | minutes      |
| Gutter                                   | 1               | 0.76       | 400        | 0.0282        | 0.110    | 1          | 2.7          |
|                                          |                 |            |            |               |          |            |              |
|                                          |                 |            |            |               |          |            |              |
|                                          |                 |            |            |               |          |            |              |
|                                          |                 |            |            |               |          |            |              |
|                                          |                 |            |            | Total Tr      | , minute | <b>S</b> : | / <b>.</b> 1 |
|                                          |                 |            |            |               |          | -          |              |
| Flow Cald                                | culations:      |            |            |               |          |            |              |
|                                          |                 |            |            |               |          |            |              |
| q10, cfs,                                | acre            | Figure     | 5-3A, Sto  | rmwater M     | anagemen | t Manual   | 2.1          |
| q25, cfs,                                | /acre           | Figure     | 5-3B, Sto  | rmwater M     | anagemen | t Manual   | 2.7          |
| q100, ci:                                | s/acre          | Figure     | 5-3C, Sto  | rmwater M     | anagemen | t Manual   | 3.8          |
|                                          |                 |            |            |               |          |            |              |
| Fi infi                                  | ltration fac    | tor of     | s/acre.    |               |          |            | 0 10         |
| ···, ·····                               |                 | COI, CI    | 5, acre.   |               |          |            | 0.10         |
| ų, cis                                   | 10-YEAR         |            |            |               |          |            | 1.6          |
| Q , cfs                                  | 25-YEAR         |            |            |               |          |            | 2.1          |
| Q , cfs                                  | 100-YEAR        |            |            |               |          |            | 2.9          |
| $\Omega - \alpha * \Lambda = (\Lambda *$ | * (1 - Imperzio | ug Ares    | ) *Fi)     |               |          |            |              |
| Q=q*A- (A*                               | *(1-Impervio    | us Area    | )*Fi)      |               |          |            |              |

| Basic Inform       | ation                            |          |          |           |          |              |           |
|--------------------|----------------------------------|----------|----------|-----------|----------|--------------|-----------|
| Pr                 | oiect:                           | Sierra   | Gateway  | Apartment | s        |              |           |
| Jo                 | b No.:                           |          | 25-7185- | 01        |          |              |           |
| Wa                 | tershed N                        | o.:      | PS SHED  | XS2       |          |              |           |
| Pr                 | epared By                        | :        | Omni-Mea | ns, Ltd.  |          |              |           |
| Da                 | te:                              |          | 08/09/15 |           |          |              |           |
| Re                 | turn Peri                        | od(s),   | Years:   |           | 10 2     | 5 100        |           |
| Ar                 | ea, Acres                        | :        |          | 0.        | 66       |              |           |
| El                 | evation,                         | Feet:    |          | 3         | 37       |              |           |
|                    |                                  |          |          |           |          |              |           |
| Infiltration       | :                                |          |          |           |          |              |           |
| Im                 | pervious                         | Area, %  | of Tota  | 1         | 808      | 6            |           |
| In                 | filtratio                        | n Rate,  | Inches/  | Hour      | 0.08     | 3            |           |
|                    |                                  |          |          |           |          |              |           |
| Overland Flo       | w:                               |          |          |           |          |              |           |
| Le                 | ngth, Fee                        | t:       | 149.3    | 4         |          |              |           |
| Sl                 | ope, ft/f                        | t:       | 0.05     | 23        |          |              |           |
|                    | N:                               |          | 0.4      | 0         |          |              |           |
|                    |                                  |          |          |           | Tr,      | minutes:     | 10.0      |
|                    |                                  |          |          |           |          |              |           |
| Channel Flow       | :                                |          |          |           |          |              |           |
|                    | Channel                          | Area     | Length   | 1 Slope   | n        | Sideslope    | e Tr      |
|                    | no.                              | Ac.      | ft.      | ft/ft     |          | ft/l         | minutes   |
| Gutter             | 1                                | 0.66     | 442.29   | 0.016     | 5 0.11   | 0 1          | 3.8       |
|                    |                                  |          |          |           |          |              |           |
|                    |                                  |          |          |           |          |              |           |
|                    |                                  |          |          |           |          |              |           |
|                    |                                  |          |          |           |          |              |           |
|                    |                                  |          |          | Total '   | Fr, minu | tes:         | 13.8      |
|                    |                                  |          |          |           |          |              |           |
|                    |                                  |          |          |           |          |              |           |
| Flow Calcula       | tions:                           |          |          |           |          |              |           |
| all cfs/acr        |                                  | Figure   | 5-3A St  | ormwater  | Managem  | ent Manual   | 1 9       |
| $q_{10}$ , cfs/acr | e .                              | Figure   | 5-38 St  | ormwater  | Managem  | ent Manual   | 2 3       |
| $q_{23}$ , crb/der | re                               | Figure   | 5-3C St  | ormwater  | Managem  | ent Manual   | 3 4       |
| q100, C15/ac       | 10                               | riguic   | 5 50, 50 | COIMWACCI | Managem  | ciic Mailuai | 5.1       |
|                    |                                  |          |          |           |          |              |           |
| Fi infiltra        | tion fact                        | or of    | acre.    |           |          |              | 0 14      |
|                    |                                  | ,        | ,        |           |          |              | v · · · · |
| <b>y</b> , cis 10  | -YEAR                            |          |          |           |          |              | 1.2       |
| Q , cfs 25         | -YEAR                            |          |          |           |          |              | 1.5       |
| 0.cfs 10           | 0-YEAR                           |          |          |           |          |              | 2.2       |
|                    | 07.00 <b>7.00000000000</b> 00000 |          |          |           |          |              |           |
| Q=q*A- (A* (1-     | Imperviou                        | ıs Area) | *Fi)     |           |          |              |           |

|            | Runoff calcula      | tions base | d on the Plac | er County Sto | orm Water | Management M | anual   |
|------------|---------------------|------------|---------------|---------------|-----------|--------------|---------|
| Basic In   | Eormation           |            |               |               |           |              |         |
|            | Project:            | Sierra     | Gateway A     | partments     |           |              |         |
|            | Job No.:            |            | 25-7185-01    | -             |           |              |         |
|            | Watershed 2         | No.:       | PS SHED 29    | )             |           |              |         |
|            | Prepared B          | y:         | Omni-Means    | s, Ltd.       |           |              |         |
|            | Date:               |            | 08/09/15      |               |           |              |         |
|            | Return Per          | iod(s),    | Years:        | 10            | 25        | 100          |         |
|            | Area, Acre          | s:         |               | 0.83          |           |              |         |
|            | Elevation,          | Feet:      |               | 330           |           |              |         |
| Infiltra   | tion:               |            |               |               |           |              |         |
|            | Impervious          | Area %     | of Total      |               | 100%      |              |         |
|            | Infiltrati          | on Rate    | ur            | 0.06          |           |              |         |
|            | Infifferati         | on nace,   | 11101100/110  | ar .          |           |              |         |
| Overland   | Flow:               |            |               |               |           |              |         |
|            | Length, Fe          | et:        | 50            |               |           |              |         |
|            | Slope, ft/          | ft:        | 0.0200        | )             |           |              |         |
|            | N                   | :          | 0.11          |               |           |              |         |
|            |                     |            |               |               | Tr, mi    | nutes:       | 3.2     |
| Channal I  | 2]                  |            |               |               |           |              |         |
| Channer    | Channel             | Area       | Length        | Slope         | n         | Sideslope    | Ψr      |
|            | no                  | Arca       | ft            | ft/ft         | 11        | f+/1         | minutes |
| Gutter     | 1                   | 0.83       | 210           | 0.0282        | 0.110     | 1            | 1.4     |
| Ditch      | 2                   | 0.83       | 170           | 0.01          | 0.250     | 1            | 3.1     |
|            |                     |            |               |               |           |              |         |
|            |                     |            |               |               |           |              |         |
|            |                     |            |               |               |           |              |         |
|            |                     |            |               | Total Tr,     | minute    | is:          | 7.7     |
|            |                     |            |               |               |           | -            |         |
| Flow Cal   | ulations.           |            |               |               |           |              |         |
| FIOW Card  | uracions.           |            |               |               |           |              |         |
| q10, cfs,  | /acre               | Figure     | 5-3A, Sto     | rmwater Mar   | nagemen   | t Manual     | 2.1     |
| q25, cfs,  | /acre               | Figure     | 5-3B, Sto     | rmwater Mar   | nagemen   | t Manual     | 2.7     |
| q100, cf:  | s/acre              | Figure     | 5-3C, Sto     | rmwater Mar   | nagemen   | t Manual     | 3.8     |
|            |                     |            |               |               |           |              |         |
|            |                     |            |               |               |           |              | 0 1 0   |
| F1, 1111.  | LLIALION IAC        | COL, CLE   | s/acre:       |               |           |              | 0.10    |
| Q , cfs    | 10-YEAR             |            |               |               |           |              | 1.7     |
| Q , cfs    | 25-YEAR             |            |               |               |           |              | 2.2     |
| 0 afe      | 100-7820            |            |               |               |           |              | 3.2     |
| X / Y+P    | +47 - + <b>94</b> 1 |            |               |               |           |              |         |
| Q=q*A- (A: | *(1-Impervic        | us Area)   | *Fi)          |               |           |              |         |

H1783DRN002.xlsx

|                          |              |                                        |           |                      | -         |                                         |
|--------------------------|--------------|----------------------------------------|-----------|----------------------|-----------|-----------------------------------------|
| Basic Information        |              |                                        |           |                      |           |                                         |
| Project:                 | Sierra (     | Gateway Ap                             | artments  |                      |           |                                         |
| Job No.:                 | 2            | 5-7185-01                              |           |                      |           |                                         |
| Watershed N              | No.: P       | S SHED 32                              |           |                      |           |                                         |
| Prepared By              | <i>i</i> : 0 | mni-Means                              | , Ltd.    |                      |           |                                         |
| Date:                    | 0            | 8/09/15                                |           |                      |           |                                         |
| Return Peri              | lod(s), Y    | ears:                                  | 10        | 25                   | 100       |                                         |
| Area, Acres              | 5:           |                                        | 1.09      |                      |           |                                         |
| Elevation,               | Feet:        |                                        | 337       |                      |           |                                         |
|                          |              |                                        |           |                      |           |                                         |
| Infiltration:            |              |                                        |           |                      |           |                                         |
| Impervious               | Area, 🗞      | of Total                               |           | 75%                  |           |                                         |
| Infiltratio              | on Rate,     | Inches/Ho                              | ur        | 0.09                 |           |                                         |
|                          |              |                                        |           |                      |           |                                         |
| overland Flow:           |              | 0.0                                    |           |                      |           |                                         |
| Length, Fee              |              | 90                                     |           |                      |           |                                         |
| Slope, It/I              |              | 0.0200                                 |           |                      |           |                                         |
| N :                      |              | 0.40                                   |           |                      | nut og .  | 0 0                                     |
|                          |              |                                        |           | 11, UU1              | liuces:   | 9.9                                     |
| Channel Flow.            |              |                                        |           |                      |           |                                         |
| Channel                  | Area         | Length                                 | Slope     | n                    | Sideslope | Ψr                                      |
| no.                      | Ac.          | ft.                                    | ft/ft     |                      | ft/l      | minutes                                 |
| Gutter 1                 | 1.09         | 221                                    | 0.0121    | 0.110                | 1         | 1.9                                     |
|                          |              |                                        |           |                      |           |                                         |
|                          |              |                                        |           |                      |           |                                         |
|                          |              |                                        |           |                      |           |                                         |
|                          |              |                                        |           |                      |           |                                         |
|                          |              |                                        | Total Tr  | , minute             | s:        | 11.7                                    |
|                          |              |                                        |           |                      |           | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |
|                          |              |                                        |           |                      | •         |                                         |
| Flow Calculations:       |              |                                        |           |                      |           |                                         |
|                          |              |                                        |           |                      | t Manual  | 2 0                                     |
| qlu, cis/acre            | Figure :     | 5-3A, Stor                             | mwater Ma | anagemen             | t Manual  | 2.0                                     |
| $q_{25}$ , $c_{15}/acre$ | Figure :     | 5-3B, SLOI                             | mwater Ma | anagemen             | t Manual  | 2.6                                     |
| qiuu, cis/acre           | Figure :     | s-3C, Stor                             | mwater Ma | anagemen             | t Manual  | 3.1                                     |
|                          |              |                                        |           |                      |           |                                         |
| Fi infiltration fac      | tor of a     | acres                                  |           |                      |           | 0 15                                    |
|                          |              | acre.                                  |           |                      |           | 0.12                                    |
| Q , CIS 10-YEAR          |              |                                        |           |                      |           | 2.2                                     |
| Q, cfs 25-YEAR           |              |                                        |           |                      |           | 2.8                                     |
| O . cfs 100-YEAR         |              |                                        |           |                      |           | 3.9                                     |
|                          |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           | ******************** | ******    |                                         |
| Q=q*A-(A*(1-Impervio     | us Area)*    | 'Fi)                                   |           |                      |           |                                         |

| Desis In                      | formation    |           |               |       |          |      |         |                      |          |
|-------------------------------|--------------|-----------|---------------|-------|----------|------|---------|----------------------|----------|
| Basic In                      | Project:     | Sierra    | Gatewa        | av A  | partment | ts   |         |                      |          |
|                               | Job No.:     |           | 25-718        | 5-01  |          |      |         |                      |          |
|                               | Watershed    | No.:      | PS SHE        | D 34  | Ł        |      |         |                      |          |
|                               | Prepared B   | у:        | Omni-№        | leans | s, Ltd.  |      |         |                      |          |
|                               | Date:        |           | 08/09/        | 15    |          |      |         |                      |          |
|                               | Return Per   | iod(s),   | Years:        |       |          | 10   | 25      | 100                  |          |
|                               | Area, Acre   | s:        |               |       | 0.       | 34   |         |                      |          |
|                               | Elevation,   | Feet:     |               |       | 3        | 25   |         |                      |          |
| Infiltra                      | tion         |           |               |       |          |      |         |                      |          |
| 11111010                      | Impervious   | Area. %   | of To         | tal   |          |      | 20%     |                      |          |
| Infiltration Rate, Inches/Hou |              |           |               |       | our      |      | 0.16    |                      |          |
|                               |              |           |               |       |          |      |         |                      |          |
| Overland                      | l Flow:      |           |               |       |          |      |         |                      |          |
|                               | Length, Fe   | et:       |               | 50    |          |      |         |                      |          |
|                               | Slope, ft/   | ft:       | 0.            | 0500  | )        |      |         |                      |          |
|                               | N            | :         | Ű             | .35   |          |      |         | nut og .             | 4 0      |
|                               |              |           |               |       |          |      | 1£, 111 | nuces:               | 4.9      |
| Channel                       | Flow:        |           |               |       |          |      |         |                      |          |
|                               | Channel      | Area      | Lenc          | ſth   | Slope    |      | n       | Sideslope            | Tr       |
|                               | no.          | Ac.       | ft            | •     | ft/ft    |      |         | ft/l                 | minutes  |
| Ditch                         | 1            | 0.34      | 400           | )     | 0.02     |      | 0.250   | 1                    | 7.0      |
|                               |              |           |               |       |          |      |         |                      |          |
|                               |              |           |               |       |          |      |         |                      |          |
|                               |              |           |               |       |          |      |         |                      |          |
|                               |              |           |               |       |          |      |         |                      | 44 8     |
|                               |              |           |               |       | TOTAL    | ır,  | minuce  | S:                   | 11.9     |
|                               |              |           |               |       |          |      |         | -                    |          |
| Flow Cal                      | culations:   |           |               |       |          |      |         |                      |          |
| al afa                        |              | Eiguno    | E 27          | C to  | xmust ox | Mos  |         | t Manual             | 2 0      |
| $q_{10}, c_{18}$              | /acre        | Figure    | 5-3A,<br>5-3B | SLO   | rmwater  | Mai  | nagemen | t Manual<br>t Manual | 2.0      |
| $q_{23}$ , $c_{13}$           | s/acre       | Figure    | 5-3C          | Sto   | rmwater  | Mai  | nagemen | t Manual             | 37       |
| 4-00, CI                      | ,            | - iguic   | 5 50,         | 200   |          | 1101 |         | c nanaai             | 5.,      |
|                               |              |           |               |       |          |      |         |                      |          |
| Fi, infi                      | ltration fac | ctor, cfs | s/acre:       |       |          |      |         |                      | 0.27     |
| 0.cfs                         | 10-YEAR      |           |               |       |          |      |         |                      | 0.6      |
| ~ ,<br>o                      |              |           |               |       |          |      |         |                      | <u> </u> |
| Y, CTR                        | 40-16AK      |           |               |       |          |      |         |                      | 0.0      |
| Q, cfs                        | 100-YEAR     |           |               |       |          |      |         |                      | 1.2      |
| Q=q*A- (A                     | *(1-Impervic | ous Area) | *Fi)          |       |          |      |         |                      |          |

|                          | Runoff calculat | tions base | d on the Plac | er County St | orm Water | Management M | anual   |
|--------------------------|-----------------|------------|---------------|--------------|-----------|--------------|---------|
| Basic In:                | formation       |            |               |              |           |              |         |
|                          | Project:        | Sierra     | Gateway A     | partments    |           |              |         |
|                          | Job No.:        |            | 25-7185-01    | L            |           |              |         |
|                          | Watershed 1     | No.:       | XS SHED 5     |              |           |              |         |
|                          | Prepared B      | y:         | Omni-Means    | s, Ltd.      |           |              |         |
|                          | Date:           |            | 08/09/15      |              |           |              |         |
|                          | Return Per      | iod(s),    | Years:        | 10           | 25        | 100          |         |
|                          | Area, Acre      | s:         |               |              |           |              |         |
|                          | Elevation,      | Feet:      |               | 337          |           |              |         |
|                          |                 |            |               |              |           |              |         |
| Infiltra                 | tion:           |            |               |              |           |              |         |
|                          | Impervious      | Area, 🖇    | of Total      |              | 75%       |              |         |
|                          | Infiltrati      | on Rate,   | Inches/Ho     | our          | 0.09      |              |         |
|                          | -1              |            |               |              |           |              |         |
| Overland                 | FLOW:           |            | 100           |              |           |              |         |
|                          | Length, Fe      | et:<br>f+. | 120           |              |           |              |         |
|                          | stope, it/      | LL:        | 0.0350        | ,            |           |              |         |
|                          | IN              | •          | 0.40          |              | Tr mi     | nuteg.       | 9 9     |
|                          |                 |            |               |              | 11, m1    | naceb.       | 5.5     |
| Channel 1                | Flow:           |            |               |              |           |              |         |
|                          | Channel         | Area       | Length        | Slope        | n         | Sideslope    | Tr      |
|                          | no.             | Ac.        | ft.           | ft/ft        |           | ft/l         | minutes |
| Gutter                   | 1               | 1.68       | 150           | 0.02         | 0.200     | 1            | 1.5     |
| Pipe                     | 2               | 1.68       | 276           | 0.02         | 0.015     |              | 1.2     |
|                          |                 |            |               |              |           |              |         |
|                          |                 |            |               |              |           |              |         |
|                          |                 |            |               |              |           |              |         |
|                          |                 |            |               | Total Tr,    | minute    | s:           | 12.5    |
|                          |                 |            |               |              |           |              |         |
|                          |                 |            |               |              |           | _            |         |
| Flow Cal                 | culations:      |            |               |              |           |              |         |
| alo afa                  | lagra           | Figuro     |               | rmustor Ma   | nagaman   | + Manual     | 1 0     |
| $q_{10}, c_{15}, c_{15}$ | /acre           | Figure     | 5-3R, SLO     | rmwater Ma   | nagemen   | t Manual     | 1.9     |
| $q_{23}$ , $c_{15}$      | /acie           | Figure     | 5-3C Sto      | rmwater Ma   | nagemen   | t Manual     | 2.5     |
| q100, CI                 | sfacie          | riguie     | 5-50, 500     | Illiwatei Ma | liiagemen | c Manual     | 5.5     |
|                          |                 |            |               |              |           |              |         |
| Fi, infi                 | ltration fac    | tor, cfs   | s/acre:       |              |           |              | 0.15    |
| a,                       | 10 7777         | ,          | -,            |              |           |              | ,<br>   |
| ų, cis                   | TO-TRAK         |            |               |              |           |              | 3.4     |
| Q , cfs                  | 25-YEAR         |            |               |              |           |              | 4.1     |
| Q , cfs                  | 100-YEAR        |            |               |              |           |              | 5.9     |
|                          |                 |            |               |              |           |              |         |
| Q=q*A- (A:               | *(l-Impervic    | ous Area)  | *F1)          |              |           |              |         |

## **APPENDIX C**

- Sierra Gateway Apartments Utility Plan Sheets (U1 through U5)
   Sierra Gateway Apartments Offsite Improvements to Sierra College Blvd (L5 and L6)





PROPOSED LANDSCAPE AREA STORM DRAIN PIPE (6" MIN, 0.5% MIN SLOPE)



DATE



5

REVISI

U TIONS U TIONS also In: RELIVIT OFER UNIT OFER

2000 DOM 1000

( IN FEET )

1 inch = 20 ft.



RECORD DRAWING ALL INFORMATION SHOWN ON THESE PLANS HAVE BEEN PREPARED PROJECT ENGINEER RCE #



BY, OR UNDER THE DIRECTION OF, THE UNDERSIGNED ENGINEER. ADJUSTMENTS MADE IN THE FIELD DURING CONSTRUCTION ARE UNCLUDED HEREIN WHEN THE PROJECT ENGINEER IS ADVISED IN WRITING OF SUCH CHANGE BY THE OWNER, DEVELOPER, CONTRACTOR, OR THE CITY OF ROCKLIN.

DATE



RECORD DRAWING ALL INFORMATION SHOWN BY, OR UNDER THE DIREC ADJUSTMENTS MADE IN TH INCLUDED HEREIN WHEN TH WRITING OF SUCH CHANGE CONTRACTOR, OR THE CIT PROJECT ENGINEER RCE #



ALL INFORMATION SHOWN ON THESE PLANS HAVE BEEN PREPARED BY, OR UNDER THE DIRECTION OF, THE UNDERSIGNED ENGINEER. ADJUSTMENTS MADE IN THE FIELD DURING CONSTRUCTION ARE INCLUDED HEREIN WHEN THE PROJECT ENGINEER IS ADVISED IN WRITING OF SUCH CHANGE BY THE OWNER, DEVELOPER, CONTRACTOR, OR THE CITY OF ROCKLIN.

DATE





| RECORD DRAMING                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALL INFORMATION SHOWN<br>BY, OR UNDER THE DIREC<br>ADJUSTMENTS MADE IN TH<br>INCLUDED HEREIN WHEN T<br>WRITING OF SUCH CHANGE<br>CONTRACTOR, OR THE CIT |
| PROJECT ENGINEER                                                                                                                                        |
| RCE #                                                                                                                                                   |



RECORD DRAWING PROJECT ENGINEER

RCE #



ALL INFORMATION SHOWN ON THESE PLANS HAVE BEEN PREPARED BY, OR UNDER THE DIRECTION OF, THE UNDERSIGNED ENGINEER. ADJUSTMENTS MADE IN THE FIELD DURING CONSTRUCTION ARE INCLUDED HEREIN WHEN THE PROJECT ENGINEER IS ADVISED IN WRITING OF SUCH CHANGE BY THE OWNER, DEVELOPER, CONTRACTOR, OR THE CITY OF ROCKLIN.

DATE





# **APPENDIX D**

1. Water Quality Structural BMPs





## **SECTION B-B**

**PLAN VIEW** 



MATERIALS LIST - PROVIDED BY CONTECH

| COUNT | DESCRIPTION                 | INSTALLED BY |
|-------|-----------------------------|--------------|
| 1     | FIBERGLASS INLET & CYLINDER | CONTECH      |
|       |                             |              |
|       |                             |              |
| 1     | 2400 MICRON SEP. SCREEN     | CONTECH      |
| 1     | SEALANT FOR JOINTS          | CONTRACTOR   |
| 1     | GRADE RINGS/ RISERS         | CONTRACTOR   |
| 1     | Ø30"x4" FRAME AND COVER     | CONTRACTOR   |
|       |                             |              |

#### **GENERAL NOTES**

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH ( ) ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. FOR SITE SPECIFIC DRAWINGS WITH DETAILED DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET AASHTO M306 LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION
- 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.

#### **INSTALLATION NOTES**

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS Β. MANHOLE STRUCTURE (LIFTING CLUTCHES PROVIDED).
- CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE. C.
- CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. D.
- CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE E. INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

<u>STRUCTURE WEIGHT</u> APPROXIMATE HEAVIEST PICK = XXX LBS.



CENTER OF CDS STRUCTURE, SCREEN AND SUMP OPENING

#### SITE DESIGN DATA

| WATER QUALITY<br>FLOW RATE    | 0.605 CFS |
|-------------------------------|-----------|
| PEAK FLOW<br>RATE             | 7.2 CFS   |
| RETURN PERIOD<br>OF PEAK FLOW | 10 YRS    |

and vork

Ā

CDS2020-5-C - 527114-10 SIERRA GATEWAY APARTMENTS ROCKLIN, CA SITE DESIGNATION: PS6

ESIGNED

HECKED:

ROJECT No

HEET:

527114

1

JML

8/7/15

JML

EQUENCE No.

10

OF #

PROVED

a service to the project r by Contech Engineer Neither this drawing, no

provic and c ("Cont may b withou withou sxpres





**SECTION B-B** 



MATERIALS LIST - PROVIDED BY CONTECH

|       | -                           |              |
|-------|-----------------------------|--------------|
| COUNT | DESCRIPTION                 | INSTALLED BY |
| 1     | FIBERGLASS INLET & CYLINDER | CONTECH      |
|       |                             |              |
| 1     | 2400 MICRON SEP. SCREEN     | CONTECH      |
| 1     | SEALANT FOR JOINTS          | CONTRACTOR   |
| 1     | GRADE RINGS/ RISERS         | CONTRACTOR   |
|       |                             |              |
| 1     | Ø30"x4" FRAME AND COVER     | CONTRACTOR   |

#### GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH ( ) ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC. REPRESENTATIVE. www.contechES.com
- 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE AND CASTINGS SHALL MEET AASHTO HS20 LOAD RATING.
- 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS
- NECESSARY DURING MAINTENANCE CLEANING.

#### INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- В. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C.
- D.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

STRUCTURE WEIGHT

APPROXIMATE HEAVIEST PICK = XXX LBS.



CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.

| WATER QUALITY<br>FLOW RATE    | 0.378 CFS |
|-------------------------------|-----------|
| PEAK FLOW<br>RATE             | 4.5 CFS   |
| RETURN PERIOD<br>OF PEAK FLOW | 10 YRS    |

SITE DESIGN DATA

CENTER OF CDS STRUCTURE, SCREEN AND SUMP OPENING

PVC HYDRAULIC

| The design and information shown on this drawing is<br>provided as a service to the project owner, engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and contractor by Contech Engineered Solutions LLC<br>("Contech"). Neither this drawing, nor any part thereof,<br>may be used removined or modified in any monor | without the prior written consent of Contech. Failure to<br>compty is done at the user's own risk and Contech | expressly disclaims any liability or responsibility for such use. | If discrepancies between the supplied information<br>upon which the drawing is based and actual field | concurrons are encountered as site work progresses,<br>these discrepancies must be reported to Contech<br>immediately for re-evaluation of the design. Contech | accepts no llability for designs based on missing,<br>incomplete or inaccurate information supplied by<br>others. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                               |                                                                   |                                                                                                       |                                                                                                                                                                | ВҮ                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                               |                                                                   |                                                                                                       |                                                                                                                                                                | REVISION DESCRIPTION                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                               |                                                                   |                                                                                                       |                                                                                                                                                                | DATE                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                               |                                                                   |                                                                                                       |                                                                                                                                                                | MARK                                                                                                              |
| CDS2015-5-C - 527114-20<br>SIERRA GATEWAY APARTMENT<br>ROCKLIN, CA<br>SITE DESIGNATION: PN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                               |                                                                   |                                                                                                       |                                                                                                                                                                |                                                                                                                   |
| TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TAPE<br>TA |                                                                                                                                                                  |                                                                                                               |                                                                   |                                                                                                       |                                                                                                                                                                |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                               | 5670 Greenwood Plaza Blvd., Su                                    | 800-526-3888                                                                                          |                                                                                                                                                                | THIS PRODUCT MAY BE PROTECTED E<br>FOLLOMING U.S. PATENTS. 5, 783-88.<br>RELATED FOREIGN PATENTS, OR OTH          |
| DATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                               | 5670 Greenwood Plaza Blvd., Su                                    | 89-077 6665-977-008                                                                                   | N:                                                                                                                                                             | THIS PRODUCT MAY BE PROTECTED E<br>FOLLOWING U.S. PATENTS: 5788.948.<br>RELATED FOREIGN PATENTS: OR OTH           |
| DATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                               | 5670 Greenwood Plaza Blvd., Su                                    | 66662-927-008                                                                                         |                                                                                                                                                                | THIS PRODUCT MAY BE PROTECTED E<br>FOLLOWING U.S. PATENTS, 5,788,948,<br>RELATED FOREISA PATENTS, OR OTH          |
| DATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E<br>IGNEE<br>JM<br>JECT<br>527                                                                                                                                  |                                                                                                               | 2670 Greenwood Plaza Blvd., Su                                    | 897077 66652-977-0008<br>15<br>PPRC                                                                   | N:<br>JML<br>DVED:<br>20                                                                                                                                       | THIS PRODUCT MAY BE PROTECTED E<br>FOLLOWING US. PATENTS: 5,788,485<br>RELATED FOREIGN PATENTS: 05 OTH            |



# **Sizing Estimate**

Provided by Jeremiah Lehman on August 7, 2015

## Sierra Gateway Apartments

Rocklin, Placer Co., CA

#### Site information:

| Structure ID | Area, A<br>(acres) | Runoff<br>Coefficient, C | Intensity, I<br>(in/hr) | Water Quality Flow,<br>Q=CIA (cfs) | Peak Flow<br>(cfs) |
|--------------|--------------------|--------------------------|-------------------------|------------------------------------|--------------------|
| PS6          | 3.6 ac             | 0.84                     | 0.20                    | 0.605                              | 7.2                |
| PN4          | 2.25 ac            | 0.84                     | 0.20                    | 0.378                              | 4.5                |

#### CDS System Sizing:

The CDS Stormwater Treatment System is a high-performance hydrodynamic separator. Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, preventing re-suspension and release of previously trapped pollutants

Extensive laboratory testing has been conducted with full scale CDS systems using silica based solids introduced at a range of flow rates and concentrations typical of field conditions. Removal rates have been determined for a wide range of particle sizes and this information is used to inform sizing decisions. For example, the listed capacity of the CDS system is the flow rate at which 80% removal of 125 micron particles will be removed. If a coarser or finer particle size is targeted, a design capacity multiplier can be determined from the equation shown in the enclosed "CDS Sediment Removal Rates" document can be used to determine the 80% removal rate.

The CDS model was selected based on the Water Quality Flow calculated above and its ability to remove 80% of the Total Suspended Solids associated with the 75-micron particle size at the required flow rate, per the requirements of the City of Rocklin.

| Recommended CDS<br>Model | Target Particle<br>Size (µm) | Water<br>Quality<br>Flow (cfs) | Design Capacity<br>Multiplier | CDS Treatment<br>Flow Capacity,<br>125 µm (cfs) | Adjusted CDS<br>Treatment Flow<br>Capacity,<br>75 µm, (cfs) |
|--------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------------------------|-------------------------------------------------------------|
| CDS2020-5-C              | 75                           | 0.605                          | 0.68                          | 1.1                                             | 0.748                                                       |
| CDS2015-5-C              | 75                           | 0.378                          | 0.68                          | 0.7                                             | 0.476                                                       |

#### Maintenance:

Like any stormwater best management practice, the CDS system requires regular inspection and maintenance to ensure optimal performance. Maintenance frequency will be driven by site conditions. Quarterly visual inspections are recommended, at which time the accumulation of pollutants can be determined. On average, the CDS system requires annual removal of accumulated pollutants.


#### CDS Sediment Removal Rates August 12, 2008

The CDS<sup>®</sup> system is a hydrodynamic separator (HDS) best known for its ability to remove 100% of neutrally buoyant materials greater than 2.4mm - 4.7mm in diameter (depending on the screen size), including most trash and debris, from treated flows. It is also designed to remove floating pollutants like oil and grease, and sinking pollutants, including sediment, from stormwater flows. A common metric used to compare the sediment removal ability of Stormwater Control Measures is Total Suspended Solids (TSS). This analytical method has been borrowed from wastewater analysis and is best suited to the measurement of particles smaller than 75 to 100 microns which have not been removed by a primary gross solids removal treatment step. In stormwater flows, the size range of particles varies dramatically in response to flow rates and available materials, and is likely to contain larger particles including coarse silt and sand which the TSS measurement method tends to exclude. So, to be precise about system capabilities, we discuss sediment removal rates for the CDS system in terms of specific particles sizes.

Extensive laboratory testing has been conducted with full scale CDS systems using silica based solids introduced at a range of flow rates and concentrations typical of field conditions. Removal rates have been determined for a wide range of particle sizes and this information is used to inform sizing decisions. For example, the listed capacity of the CDS system is the flow rate at which 80% removal of 125 micron particles will be removed. If a coarser or finer particle size is targeted, the equation from the following figure can be used to determine the 80% removal rate.



Ultimately the question of TSS removal rate depends on the size and density of the solids measured by the TSS analytical procedure. The 125 micron default particle size was selected because it is a reasonable approximation of the average particle size of all sediment in stormwater runoff. If solids targeted for removal are expected to be significantly coarser or finer, another particle size may be more appropriate. In order to compare different sediment removal strategies, it is important to specify a target particle size or particle size distribution. Each system should then be evaluated relative to that standard. Please note that media filtration may be necessary to remove particles substantially finer than 50 microns, including dissolved pollutants.

For more information, please contact:

#### Vaikko Allen, CPSWQ, LEED-AP

Regulatory Manager – West Contech Engineered Solutions LLC E-mail: <u>vallen@conteches.com</u> Phone: 805.485.0154



# **CDS®** Inspection and Maintenance Guide





#### Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

### Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

## Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.



| CDS Diameter<br>Model |    |     | Distance from Water Surface Sediment<br>to Top of Sediment Pile Storage Capacity |     |     |     |
|-----------------------|----|-----|----------------------------------------------------------------------------------|-----|-----|-----|
|                       | ft | m   | ft                                                                               | m   | yd3 | m3  |
| CDS2015-4             | 4  | 1.2 | 3.0                                                                              | 0.9 | 0.9 | 0.7 |
| CDS2015               | 5  | 1.5 | 3.0                                                                              | 0.9 | 1.3 | 1.0 |
| CDS2020               | 5  | 1.5 | 3.5                                                                              | 1.1 | 1.3 | 1.0 |
| CDS2025               | 5  | 1.5 | 4.0                                                                              | 1.2 | 1.3 | 1.0 |
| CDS3020               | 6  | 1.8 | 4.0                                                                              | 1.2 | 2.1 | 1.6 |
| CDS3030               | 6  | 1.8 | 4.6                                                                              | 1.4 | 2.1 | 1.6 |
| CDS3035               | 6  | 1.8 | 5.0                                                                              | 1.5 | 2.1 | 1.6 |
| CDS4030               | 8  | 2.4 | 4.6                                                                              | 1.4 | 5.6 | 4.3 |
| CDS4040               | 8  | 2.4 | 5.7                                                                              | 1.7 | 5.6 | 4.3 |
| CDS4045               | 8  | 2.4 | 6.2                                                                              | 1.9 | 5.6 | 4.3 |
| CDS5640               | 10 | 3.0 | 6.3                                                                              | 1.9 | 8.7 | 6.7 |
| CDS5653               | 10 | 3.0 | 7.7                                                                              | 2.3 | 8.7 | 6.7 |
| CDS5668               | 10 | 3.0 | 9.3                                                                              | 2.8 | 8.7 | 6.7 |
| CDS5678               | 10 | 3.0 | 10.3                                                                             | 3.1 | 8.7 | 6.7 |

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities



#### Support

- Drawings and specifications are available at www.contechstormwater.com.
- Site-specific design support is available from our engineers.

©2014 Contech Engineered Solutions LLC

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, earth stabilization and wastewater treament products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. SEE THE CONTECH STANDARD CONDITION OF SALES (VIEWABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; 7,517,450 related foreign patents or other patents pending.



# CDS Inspection & Maintenance Log

| CDS Model: Location: |                                            |                                  |                                      |                          |          |  |
|----------------------|--------------------------------------------|----------------------------------|--------------------------------------|--------------------------|----------|--|
| Date                 | Water<br>depth to<br>sediment <sup>1</sup> | Floatable<br>Layer<br>Thickness² | Describe<br>Maintenance<br>Performed | Maintenance<br>Personnel | Comments |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |
|                      |                                            |                                  |                                      |                          |          |  |

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.